Geoscience ›› 2024, Vol. 38 ›› Issue (02): 419-426.DOI: 10.19657/j.geoscience.1000-8527.2023.055
• Hydrogeology, Engineering Geology and Environmental Geology • Previous Articles Next Articles
XUE Yang1,2,3(), LIAO Fu2,3(
), WANG Guangcai2,3(
)
Received:
2022-04-26
Revised:
2023-08-21
Online:
2024-04-10
Published:
2024-05-22
CLC Number:
XUE Yang, LIAO Fu, WANG Guangcai. Study on the pH of Groundwater and Its Controlling Factors in the Poyang Lake Area, Jiangxi[J]. Geoscience, 2024, 38(02): 419-426.
属性 | 枯水期 | 丰水期 |
---|---|---|
最小值 | 4.75 | 4.76 |
最大值 | 8.41 | 7.43 |
均值 | 6.43 | 6.05 |
中位数 | 6.55 | 6.11 |
标准偏差 | 0.69 | 0.65 |
变差系数 | 0.11 | 0.11 |
偏酸性水(pH<6.5)比例(%) | 54.00 | 75.00 |
Table 1 Statistical values of the pH of groundwateraround Poyany Lake area
属性 | 枯水期 | 丰水期 |
---|---|---|
最小值 | 4.75 | 4.76 |
最大值 | 8.41 | 7.43 |
均值 | 6.43 | 6.05 |
中位数 | 6.55 | 6.11 |
标准偏差 | 0.69 | 0.65 |
变差系数 | 0.11 | 0.11 |
偏酸性水(pH<6.5)比例(%) | 54.00 | 75.00 |
水化学类型 | 枯水期 | 丰水期 | ||||
---|---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | |
HCO3-Ca | 6.30 | 8.41 | 7.00 | 5.38 | 7.07 | 6.79 |
HCO3-Ca·Mg | 6.15 | 7.26 | 6.75 | 5.64 | 6.71 | 6.17 |
HCO3-Ca·Na | 6.10 | 6.42 | 6.35 | 5.60 | 7.43 | 6.49 |
NO3·HCO3、HCO3 ·NO3 | 5.15 | 6.80 | 5.86 | 5.06 | 6.91 | 5.97 |
NO3·Cl、Cl·NO3 | 4.75 | 6.26 | 5.80 | 4.76 | 6.13 | 5.31 |
Table 2 The pH values and hydrochemical types of the groundwater during the wet and dry seasons in the Poyang Lake area
水化学类型 | 枯水期 | 丰水期 | ||||
---|---|---|---|---|---|---|
最小值 | 最大值 | 平均值 | 最小值 | 最大值 | 平均值 | |
HCO3-Ca | 6.30 | 8.41 | 7.00 | 5.38 | 7.07 | 6.79 |
HCO3-Ca·Mg | 6.15 | 7.26 | 6.75 | 5.64 | 6.71 | 6.17 |
HCO3-Ca·Na | 6.10 | 6.42 | 6.35 | 5.60 | 7.43 | 6.49 |
NO3·HCO3、HCO3 ·NO3 | 5.15 | 6.80 | 5.86 | 5.06 | 6.91 | 5.97 |
NO3·Cl、Cl·NO3 | 4.75 | 6.26 | 5.80 | 4.76 | 6.13 | 5.31 |
变量 | 系数 | T检验 | p值 |
---|---|---|---|
常量 | d=6.494 | 38.44 | 0 |
土壤类型 | a=-0.502 | -2.73 | 0.009 |
NO3- | b=-0.030 | -1.12 | 0.268 |
碳酸盐岩(Ca2+) | c=0.010 | -2.49 | 0.016 |
Table 3 Parameters of the multivariable linear regressionmodel
变量 | 系数 | T检验 | p值 |
---|---|---|---|
常量 | d=6.494 | 38.44 | 0 |
土壤类型 | a=-0.502 | -2.73 | 0.009 |
NO3- | b=-0.030 | -1.12 | 0.268 |
碳酸盐岩(Ca2+) | c=0.010 | -2.49 | 0.016 |
[1] | 张玉玺, 孙继朝, 陈玺, 等. 珠江三角洲浅层地下水pH值的分布及成因浅析[J]. 水文地质工程地质, 2011, 38(1): 16-21. |
[2] | GE F, ZHU L Z, CHEN H R. Effects of pH on the chlorination process of phenols in drinking water[J]. Journal of Hazardous Materials, 2006, 133(1/2/3): 99-105. |
[3] |
KIM E J, HERRERA J E, HUGGINS D, et al. Effect of pH on the concentrations of lead and trace contaminants in drinking water: A combined batch, pipe loop and sentinel home study[J]. Water Research, 2011, 45(9): 2763-2774.
DOI PMID |
[4] |
WANG C H, YUAN N N, PEI Y S. Effect of pH on metal lability in drinking water treatment residuals[J]. Journal of Environmental Quality, 2014, 43(1): 389-397.
DOI PMID |
[5] | 王文东, 杨宏伟, 蒋晶, 等. 水温和pH对饮用水中铝形态分布的影响[J]. 环境科学, 2009, 30(8): 2259-2262. |
[6] | GUNARATHNA M, KUMARI M, NIMMANEE K. Evaluation of interpolation methods for mapping pH of groundwater[J]. International Journal of Latest Technology in Engineering: Management & Applied Science, 2016, 5(3): 1-5. |
[7] |
LI D E, EGODAWATTE S, KAPLAN D I, et al. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater[J]. Journal of Hazardous Materials, 2016, 317: 494-502.
DOI PMID |
[8] |
RODEN E E, MCBETH J M, BLÖTHE M, et al. The microbial ferrous wheel in a neutral pH groundwater seep[J]. Frontiers in Microbiology, 2012, 3: 172.
DOI PMID |
[9] | LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. |
[10] | LI Y L, YAO J, ZHAO G Z, et al. Evidences of hydraulic relationships between groundwater and lake water across the large floodplain wetland of Poyang Lake, China[J]. Water Supply, 2018, 18(2): 698-712. |
[11] | SOLDATOVA E, DONG Y H, LI J L, et al. Nitrogen transformation and pathways in the shallow groundwater-soil system within agricultural landscapes[J]. Environmental Geochemistry and Health, 2021, 43(1): 441-459. |
[12] | SUN Z X, SOLDATOVA E A, GUSEVA N V, et al. Impact of human activity on the groundwater chemical composition of the south part of the Poyang Lake basin[J]. IERI Procedia, 2014, 8: 113-118. |
[13] | WANG Z C, YANG Y, CHEN G, et al. Variation of lake-river-aquifer interactions induced by human activity and climatic condition in Poyang Lake Basin, China[J]. Journal of Hydrology, 2021, 595: 126058. |
[14] | 陈建生, 彭靖, 詹泸成, 等. 鄱阳湖流域河水、湖水及地下水同位素特征分析[J]. 水资源保护, 2015, 31(4): 1-7. |
[15] |
李云良, 赵贵章, 姚静, 等. 湖岸带地下水与湖水作用关系: 以鄱阳湖为例[J]. 热带地理, 2017, 37(4): 522-529.
DOI |
[16] | 钟秋娟, 肖兴, 汪凡, 等. 鄱阳湖滨湖区浅层地下水镉元素分布特征及成因分析[J]. 上海国土资源, 2017, 38(2): 46-48. |
[17] | SHVARTSEV S, SHEN Z L, SUN Z X, et al. Evolution of the groundwater chemical composition in the Poyang Lake Catchment, China[J]. Environmental Earth Sciences, 2016, 75(18):1239. |
[18] | MAO H R, WANG G C, LIAO F, et al. Geochemical evolution of groundwater under the influence of human activities: A case study in the southwest of Poyang Lake Basin[J]. Applied Geochemistry, 2022, 140: 105299. |
[19] | 饶志, 储小东, 吴代赦, 等. 鄱阳湖平原地下水重金属含量特征与健康风险评估[J]. 水文地质工程地质, 2019, 46(5): 31-37. |
[20] | ZHOU P P, WANG G C, MAO H R, et al. Numerical modeling for the temporal variations of the water interchange between groundwater and surface water in a regional great lake (Poyang Lake, China)[J]. Journal of Hydrology, 2022, 610: 127827. |
[21] | LIAO F, WANG G C, SHI Z M, et al. Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China[J]. Exposure and Health, 2018, 10(4): 211-227. |
[22] |
WANG Q, RIEMANN D, VOGT S, et al. Impacts of land cover changes on climate trends in Jiangxi Province China[J]. International Journal of Biometeorology, 2014, 58(5): 645-660.
DOI PMID |
[23] | 曾昭华, 罗教生. 鄱阳湖地区地下水中氟元素的背景特征及其形成[J]. 环境与开发, 1999(2): 8-10. |
[24] | 翟大兴, 杨忠芳, 柳青青, 等. 鄱阳湖流域水化学特征及影响因素分析[J]. 地学前缘, 2012, 19(1): 264-276. |
[25] | 潘根兴, 冉炜. 中国大气酸沉降与土壤酸化问题[J]. 热带亚热带土壤科学, 1994, 3(4):243-252. |
[26] | 吴建明, 邹海波, 贺志明. 江西省酸雨变化特征及其与气象条件的关系[J]. 气象与减灾研究, 2012, 35(2): 45-50. |
[27] | 赵小敏, 尹国胜, 郭熙, 等. 鄱阳湖地区农业地质环境与农业资源可持续利用研究[M]. 北京: 地质出版社, 2011. |
[28] | 文帮勇, 杨忠芳, 侯青叶, 等. 江西鄱阳湖地区土壤酸化与人为源氮的关系[J]. 现代地质, 2011, 25(3): 562-568. |
[29] | 李学礼, 孙占学, 刘金辉. 水文地球化学[M]. 北京: 原子能出版社, 2010. |
[30] | 许中坚, 刘广深, 俞佳栋. 氮循环的人为干扰与土壤酸化[J]. 地质地球化学, 2002, 30(2): 74-78. |
[31] | 郭金芝, 金东日, 杜长青, 等. 施肥对大棚蔬菜地土壤水及地下水硝酸盐和亚硝酸盐污染的研究[J]. 延边大学学报(自然科学版), 2009, 35(2): 156-159. |
[32] |
LAMBRAKIS N, ANTONAKOS A, PANAGOPOULOS G. The use of multicomponent statistical analysis in hydrogeological environmental research[J]. Water Research, 2004, 38(7): 1862-1872.
PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||