Geoscience ›› 2023, Vol. 37 ›› Issue (05): 1254-1263.DOI: 10.19657/j.geoscience.1000-8527.2023.039
• Sedimentology • Previous Articles Next Articles
SHI Liang(), FAN Bojiang(
), WANG Xia, LI Yating, HUANG Feifei, DAI Xinyang
Received:
2022-04-02
Revised:
2023-04-11
Online:
2023-10-10
Published:
2023-11-14
CLC Number:
SHI Liang, FAN Bojiang, WANG Xia, LI Yating, HUANG Feifei, DAI Xinyang. Element Composition and Sedimentary Environment of Chang 9 Shale Source Rocks in the Ordos Basin[J]. Geoscience, 2023, 37(05): 1254-1263.
[1] | 王西强, 舒成龙, 高雪, 等. 对鄂尔多斯盆地三叠系延长组传统地层划分方案的反思: 以姬塬油田罗38区、罗211区为例[J]. 大庆石油地质与开发, 2020, 39(6): 21-30. |
[2] | 李智勇, 徐云泽, 邓静, 等. 陆相湖泊深水砂质碎屑流与浊流的微观沉积特征及区分方法: 以鄂尔多斯盆地延长组长7段为例[J]. 石油实验地质, 2021, 43(3): 415-423. |
[3] | 师良, 赵彤彤, 查辉, 等. 延安周边地区页岩地球化学特征及页岩油潜力评价[J]. 现代地质, 2021, 35(4): 1043-1053. |
[4] | 任海姣, 赵靖舟, 耳闯, 等. 环县—正宁地区长9油层组沉积物源分析[J]. 西安石油大学学报(自然科学版), 2018, 33(2): 31-36, 118. |
[5] | 范柏江, 晋月, 师良, 等. 鄂尔多斯盆地中部页岩油的勘探潜力:以长7湖相页岩为例[J]. 石油与天然气地质, 2021, 42(5): 1078-1088. |
[6] | 范柏江, 师良, 杨杰, 等. 鄂尔多斯盆地中部湖相有机质沉积环境特征[J]. 石油与天然气地质, 2022, 43(3): 648-657. |
[7] | 白玉彬, 赵靖舟, 高振东, 等. 鄂尔多斯盆地杏子川油田长9烃源岩特征及油气勘探意义[J]. 中国石油大学学报(自然科学版), 2013, 37(4): 38-45. |
[8] |
吉利明, 李剑锋, 张明震, 等. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响[J]. 地学前缘, 2021, 28(1): 388-401.
DOI |
[9] | 刘国恒, 翟刚毅, 邹才能, 等. 鄂尔多斯盆地延长组泥页岩硅质来源与油气富集[J]. 石油实验地质, 2019, 41(1): 45-55, 67. |
[10] | 韩佳兵, 柳蓉, 刘招君, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长9段浊积岩特征及对有机质富集的影响[J]. 世界地质, 2018, 37(4): 1177-1186. |
[11] | 高波, 武晓玲, 张英, 等. 鄂尔多斯盆地南部张家滩油页岩生烃演化特征[J]. 石油实验地质, 2022, 44(1): 24-32. |
[12] |
KALNICKY D J, SINGHVI R. Field portable XRF analysis of environmental samples[J]. Journal of Hazardous Materials, 2001, 83(1/2): 93-122.
DOI URL |
[13] | MCLENNAN S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021. |
[14] |
WANG Q F, JIANG F J, JI H C, et al. Differential enrichment of organic matter in saline lacustrine source rocks in a rift basin: A case study of Paleogene source rocks, Dongpu depression, Bohai Bay Basin[J]. Natural Resources Research, 2020, 29(6): 4053-4072.
DOI |
[15] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace me-tals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
DOI URL |
[16] |
MORADI A V, SARI A, AKKAYA P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for Paleoclimate conditions, source-area weathering, provenance and tectonic setting[J]. Sedimentary Geology, 2016, 341(15): 289-303.
DOI URL |
[17] |
DING J H, ZHANG J C, HUO Z P, et al. Controlling factors and formation models of organic matter accumulation for the upper Permian dalong formation black shale in the Lower Yangtze region, South China: Constraints from geochemical evidence[J]. ACS Omega, 2021, 6(5): 3681-3692.
DOI PMID |
[18] | 吴诗情, 郭建华, 王玺凯, 等. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理[J]. 中南大学学报(自然科学版), 2020, 51(8): 2049-2060. |
[19] | 范玉海, 屈红军, 王辉, 等. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 39(2): 382-389. |
[20] |
SINGH A K, KUMAR A. Assessment of thermal maturity, source rock potential and paleodepositional environment of the Paleogene lignites in Barsingsar, Bikaner-Nagaur basin, western Rajasthan, India[J]. Natural Resources Research, 2020, 29(2): 1283-1305.
DOI |
[21] |
LIU B, SUN J H, ZHANG Y Q, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 608-624.
DOI URL |
[22] |
TAYLOR K G, MACQUAKER J H S. Diagenetic alterations in a silt- and clay-rich mudstone succession: an example from the Upper Cretaceous Mancos Shale of Utah, USA[J]. Clay Minerals, 2014, 49(2): 213-227.
DOI URL |
[23] |
ROY D K, ROSER B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir Basin, Bangladesh[J]. Gondwana Research, 2013, 23(3): 1163-1171.
DOI URL |
[24] |
WANG Z W, WANG J, FU X G, et al. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting[J]. Journal of Asian Earth Sciences, 2018, 160: 118-135.
DOI URL |
[25] |
林俊峰, 郝芳, 胡海燕, 等. 廊固凹陷沙河街组烃源岩沉积环境与控制因素[J]. 石油学报, 2015, 36(2): 163-173.
DOI |
[26] |
RIMMER S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391.
DOI URL |
[27] | 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6): 1265-1273. |
[28] |
FU X G, JIAN W, CHEN W B, et al. Organic accumulation in lacustrine rift basin: Constraints from mineralogical and multiple geochemical proxies[J]. International Journal of Earth Sciences, 2015, 104(2): 495-511.
DOI URL |
[29] | WIGNALL P B. Black Shales[M]. Oxford: Clarendon Press, 1994. |
[30] |
RIKHVANOV L P. Using radioactive elements and the Th/U ratio in study of the geochemical typification of granitoids and their intrusive character[J]. Russian Geology and Geophysics, 2019, 60(9): 1018-1025.
DOI URL |
[31] |
李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483.
DOI |
[32] | 解兴伟, 袁华茂, 宋金明, 等. 海洋沉积物中氧化还原敏感元素对水体环境缺氧状况的指示作用[J]. 地质论评, 2019, 65(3): 671-688. |
[33] | 牛贺才, 单强, 罗勇, 等. 西天山玉希莫勒盖达坂石英闪长岩的微量元素地球化学及同位素年代学研究[J]. 岩石学报, 2010, 26(10): 2935-2945. |
[34] |
SHULGA N A. Distribution of n-alkanes in the ferromanganese nodule-sediment-pore water system (Clarion-Clipperton Fracture Zone)[J]. Lithology and Mineral Resources, 2017, 52(6): 435-441.
DOI URL |
[35] |
NESSEL M P, KONNOVITCH T, ROMERO G Q, et al. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: A global meta-analysis[J]. Biological Reviews, 2021, 96(6): 2617-2637.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||