Geoscience ›› 2023, Vol. 37 ›› Issue (05): 1243-1253.DOI: 10.19657/j.geoscience.1000-8527.2023.023
• Sedimentology • Previous Articles Next Articles
ZHANG Yifan(), GAO Yuan(
), CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian
Received:
2022-11-19
Revised:
2023-03-16
Online:
2023-10-10
Published:
2023-11-14
CLC Number:
ZHANG Yifan, GAO Yuan, CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian. Carbon and Oxygen Isotope Characteristics of Late Cretaceous Lacustrine Dolomite in the Songliao Basin and their Paleoenvironmental Implications[J]. Geoscience, 2023, 37(05): 1243-1253.
Fig.1 Tectonic division of Songliao Basin and location of sections (a) and generalized stratigraphic column of the Songliao Basin (b)(modified from Feng et al.[26])
样品号 | 剖面 | δ13CVPDB (‰) | δ18OVPDB (‰) | δ18O VSMOW (‰) | δ18Owater (‰) | Z |
---|---|---|---|---|---|---|
LT03 | 李家坨子剖面 | 7.05 | -7.71 | 22.96 | 0-8.75 | 138 |
LT05 | -3.30 | -11.30 | 19.26 | -12.33 | 115 | |
LT12 | -8.36 | -3.82 | 26.97 | -4.87 | 108 | |
LT16 | -4.06 | -11.21 | 19.36 | -12.24 | 113 | |
LT20 | -3.09 | -11.09 | 19.48 | -12.12 | 115 | |
LT23 | 6.70 | -7.15 | 23.54 | -8.20 | 137 | |
LT25 | 6.21 | -7.51 | 23.17 | -8.55 | 136 | |
LT27 | 4.49 | -8.55 | 22.10 | -9.59 | 132 | |
LT29 | 4.72 | -7.79 | 22.88 | -9.83 | 133 | |
LT32 | 2.16 | -8.77 | 21.87 | -9.81 | 127 | |
LT34 | 0.99 | -9.23 | 21.39 | -10.27 | 125 | |
LT38 | 2.84 | -8.13 | 22.53 | -9.17 | 129 | |
LT86 | -2.20 | -10.58 | 20.00 | -11.62 | 118 | |
LT89 | 1.20 | -9.54 | 21.07 | -10.58 | 125 | |
NH02C | 鸟河剖面 | 0.65 | -7.85 | 22.82 | -10.41 | 125 |
NH03C | 0.72 | -7.84 | 22.83 | -10.40 | 125 | |
NH4 | -0.01 | -8.60 | 22.04 | -11.16 | 123 | |
NH04C | -0.17 | -8.57 | 22.08 | -11.13 | 123 | |
NH05C | 0.78 | -7.97 | 22.70 | -10.53 | 125 | |
NH07C | 0.02 | -8.88 | 21.75 | -11.44 | 123 | |
NH10 | 0.65 | -8.18 | 22.48 | -10.73 | 125 | |
NH42 | -4.74 | -10.03 | 20.57 | -12.58 | 113 | |
NH43 | -5.89 | -9.42 | 21.19 | -11.98 | 111 |
Table 1 C-O isotope compositions of dolomites in the SongliaoBasin
样品号 | 剖面 | δ13CVPDB (‰) | δ18OVPDB (‰) | δ18O VSMOW (‰) | δ18Owater (‰) | Z |
---|---|---|---|---|---|---|
LT03 | 李家坨子剖面 | 7.05 | -7.71 | 22.96 | 0-8.75 | 138 |
LT05 | -3.30 | -11.30 | 19.26 | -12.33 | 115 | |
LT12 | -8.36 | -3.82 | 26.97 | -4.87 | 108 | |
LT16 | -4.06 | -11.21 | 19.36 | -12.24 | 113 | |
LT20 | -3.09 | -11.09 | 19.48 | -12.12 | 115 | |
LT23 | 6.70 | -7.15 | 23.54 | -8.20 | 137 | |
LT25 | 6.21 | -7.51 | 23.17 | -8.55 | 136 | |
LT27 | 4.49 | -8.55 | 22.10 | -9.59 | 132 | |
LT29 | 4.72 | -7.79 | 22.88 | -9.83 | 133 | |
LT32 | 2.16 | -8.77 | 21.87 | -9.81 | 127 | |
LT34 | 0.99 | -9.23 | 21.39 | -10.27 | 125 | |
LT38 | 2.84 | -8.13 | 22.53 | -9.17 | 129 | |
LT86 | -2.20 | -10.58 | 20.00 | -11.62 | 118 | |
LT89 | 1.20 | -9.54 | 21.07 | -10.58 | 125 | |
NH02C | 鸟河剖面 | 0.65 | -7.85 | 22.82 | -10.41 | 125 |
NH03C | 0.72 | -7.84 | 22.83 | -10.40 | 125 | |
NH4 | -0.01 | -8.60 | 22.04 | -11.16 | 123 | |
NH04C | -0.17 | -8.57 | 22.08 | -11.13 | 123 | |
NH05C | 0.78 | -7.97 | 22.70 | -10.53 | 125 | |
NH07C | 0.02 | -8.88 | 21.75 | -11.44 | 123 | |
NH10 | 0.65 | -8.18 | 22.48 | -10.73 | 125 | |
NH42 | -4.74 | -10.03 | 20.57 | -12.58 | 113 | |
NH43 | -5.89 | -9.42 | 21.19 | -11.98 | 111 |
[1] | 陈登辉, 巩恩普, 梁俊红, 等. 辽西下白垩统义县组湖相碳酸盐岩中的燧石成因[J]. 地质学报, 2010, 84(8): 1208-1214. |
[2] |
LI H S, LIU X Q, ARNOLD A, et al. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in Western China and other regions and implications for paleotemperature and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2021, 562: 116840.
DOI URL |
[3] | 梁俊红, 巩恩普, 李永杰. 早白垩世义县盆地义县组顶部金刚山层沉积相及其古环境意义[J]. 沉积学报, 2012, 30(4): 689-695. |
[4] | 夏青松, 田景春, 倪新锋. 湖相碳酸盐岩研究现状及意义[J]. 沉积与特提斯地质, 2003, 23(1): 105-112. |
[5] | 王英华, 周书欣, 张秀莲. 中国湖相碳酸盐岩[M].中国矿业大学出版社, 1993. |
[6] | 苏玲, 朱如凯, 崔景伟, 等. 中国湖相碳酸盐岩时空分布与碳氧同位素特征[J]. 古地理学报, 2017, 19(6): 1063-1074. |
[7] |
LENG M J, MARSHALL J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831.
DOI URL |
[8] | TIERNEY J E, POULSEN C J, MONTAÑEZ I P, et al. Past climates inform our future[J]. Science, 2020, 370: eaay3701. |
[9] |
TAKASHIMA R, NISHI H, HUBER B, et al. Greenhouse world and the Mesozoic Ocean[J]. Oceanography, 2006, 19(4): 82-92.
DOI URL |
[10] | 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11-21. |
[11] |
SCOTESE C R. An atlas of Phanerozoic paleogeographic maps: The Seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728.
DOI URL |
[12] | 席党鹏, 万晓樵, 李国彪, 等. 中国白垩纪综合地层和时间框架[J]. 中国科学(地球科学) 2019, 49(1): 257-288. |
[13] | JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): n/a. |
[14] | 王天天, 黄永建, 张之辉, 等. 松辽盆地嫩江组草莓状黄铁矿及其古环境意义[J]. 山东科技大学学报(自然科学版), 2021, 40(5): 1-9. |
[15] | 秦健铭, 陈积权, 高远, 等. 松辽盆地晚白垩世陆表古温度定量重建: 以LD6-7井嫩江组一、二段为例[J]. 沉积学报, 2020, 38(4): 759-770. |
[16] |
GAO Y, WANG C S, WANG P J, et al. Progress on continental scientific drilling project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75.
DOI PMID |
[17] | 曹晓萌. 松辽盆地晚白垩世青山口组页岩孔隙特征及其演化规律[D]. 北京: 中国地质大学(北京), 2020. |
[18] | 王国栋, 程日辉, 王璞珺, 等. 松辽盆地嫩江组白云岩形成机理: 以松科1井南孔为例[J]. 地质学报, 2008, 82(1): 48-54, 146. |
[19] | 孙健, 董兆雄, 郑琴. 白云岩成因的研究现状及相关发展趋势[J]. 海相油气地质, 2005, 10(3): 25-30. |
[20] | 刘万洙, 王璞珺. 松辽盆地嫩江组白云岩结核的成因及其环境意义[J]. 岩相古地理, 1997, 17(1): 22-26. |
[21] | 王璞珺, 王东坡, 杜小弟. 松辽盆地白垩系青山口组黑色页岩的形成环境及海水侵入的底流模式[J]. 岩相古地理, 1996, 16(1): 34-43. |
[22] | 王璞珺, 杜小弟, 王东坡. 松辽盆地白垩纪湖侵沉积层序与湖海沟通事件的地球化学记录[J]. 岩相古地理, 1995, 15(4): 14-20. |
[23] |
GAO X, WANG P K, LI D R, et al. Petrologic characteristics and genesis of dolostone from the Campanian of the SK-I Well Core in the Songliao Basin, China[J]. Geoscience Frontiers, 2012, 3(5): 669-680.
DOI URL |
[24] | 高翔, 王平康, 李秋英, 等. 松科1井嫩江组湖相含铁白云石的准确定名和矿物学特征[J]. 岩石矿物学杂志, 2010, 29(2): 213-218. |
[25] |
GAO Y A, IBARRA D E, WANG C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.
DOI URL |
[26] |
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95.
DOI URL |
[27] | 陈积权, 高远, 秦健铭, 等. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质, 2017, 29(8): 17-24. |
[28] | 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学版), 2002, 38(4): 525-531. |
[29] |
WANG C S, SCOTT R W, WAN X Q, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric Sea strata[J]. Earth-Science Reviews, 2013, 126: 275-299.
DOI URL |
[30] |
WANG C S. Environmental/climate change in the Cretaceous greenhouse world: Records from terrestrial scientific drilling of Songliao Basin and adjacent areas of China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 1-5.
DOI URL |
[31] |
XI D P, WAN X Q, FENG Z Q, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: Evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56(3): 253-256.
DOI URL |
[32] | 司伟民, 席党鹏, 黄清华, 等. 松辽盆地东部宾县凹陷青山口组介形类生物地层与生态环境[J]. 地质学报, 2010, 84(10): 1389-1400. |
[33] | 高有峰, 王璞珺, 程日辉, 等. 松科1井南孔白垩系青山口组一段沉积序列精细描述: 岩石地层、沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 314-323. |
[34] | 孙平昌. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学[D]. 长春: 吉林大学, 2013. |
[35] |
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
DOI URL |
[36] |
COPLEN T B, KENDALL C, HOPPLE J. Comparison of stable isotope reference samples[J]. Nature, 1983, 302: 236-238.
DOI |
[37] |
MCCORMACK J, KWIECIEN O. Coeval primary and diagenetic carbonates in lacustrine sediments challenge palaeoclimate interpretations[J]. Scientific Reports, 2021, 11: 7935.
DOI PMID |
[38] |
GARZIONE C N, DETTMAN D L, HORTON B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(1/2): 119-140.
DOI URL |
[39] | SHARP Z D. Principles of Stable Isotope Geochemistry[M]. 2nd Edi.New Mexico:University of New Mexico:2017. |
[40] | BERNASCONI S M, MCKENZIE J A. Carbonate stable isotopes | lake sediments[M]// Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2013: 333-340. |
[41] |
GROTZINGER J P, FIKE D A, FISCHER W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience, 2011, 4(5): 285-292.
DOI |
[42] | 王璞珺, 刘万洙, 单玄龙. 事件沉积: 导论·实例·应用[M]. 长春: 吉林科学技术出版社, 2001. |
[43] |
ZHANG C, FAN R, LI J, et al. Carbon and oxygen isotopic compositions: How lacustrine environmental factors respond in northwestern and northeastern China[J]. Acta Geologica Sinica, 2013, 87(5):1344-1354.
DOI URL |
[44] |
LOYD S J, BERELSON W M, LYONS T W, et al. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate[J]. Geochimica et Cosmochimica Acta, 2012, 78: 77-98.
DOI URL |
[45] | 张成君, 张菀漪, 张丽, 等. 中国西部、东北地区湖泊沉积物中碳酸盐碳、氧和有机碳同位素组成及与环境的响应[J]. 矿物岩石地球化学通报, 2016, 35(4): 609-617, 607. |
[46] | HOEFS J. Stable Isotope Geochemistry[M].6th Edi. Washington:Springer:2009. |
[47] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
DOI URL |
[48] |
HORTON T W, DEFLIESE W F, TRIPATI A K, et al. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects[J]. Quaternary Science Reviews, 2016, 131: 365-379.
DOI URL |
[49] |
DING L, XU Q, YUE Y H, et al. The andean-type gangdese mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
DOI URL |
[50] |
MORRILL C, KOCH P L. Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin[J]. Geology, 2002, 30(2): 151-154.
DOI URL |
[51] |
BENNETT C E, WILLIAMS M, LENG M J, et al. Diagenesis of fossil ostracods: Implications for stable isotope based palaeoenvironmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1/2/3/4): 150-161.
DOI URL |
[52] |
BINI M, ZANCHETTA G, PERŞOIU A, et al. The 4.2 ka BP event in the Mediterranean region: An overview[J]. Climate of the Past, 2019, 15(2): 555-577.
DOI |
[53] |
ZHANG P Y, WANG Y L, ZHANG X J, et al. Carbon, oxygen and strontium isotopic and elemental characteristics of the Cambrian Longwangmiao Formation in South China: Paleoenvironmental significance and implications for carbon isotope excursions[J]. Gondwana Research, 2022, 106: 174-190.
DOI URL |
[54] |
王淑丽, 郑绵平, 张震, 等. 四川盆地寒武系含盐盆地演化及其找钾意义: 来自碳氧同位素的证据[J]. 地学前缘, 2016, 23(5): 202-220.
DOI |
[55] |
QING H R, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442.
DOI URL |
[56] | TALBOT M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology, 1990, 80(4): 261-279. |
[57] |
LI H C, KU T L. δ13C-δ18C covariance as a paleohydrological indicator for closed-basin lakes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133(1/2): 69-80.
DOI URL |
[58] | TALBOT M, KELTS K. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments[M]// Lacustrine Basin Exploration. Washington: American Association of Petroleum Geologists, 1990: 99-112. |
[59] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[60] |
YU Z Q, HE H Y, DENG C L, et al. New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Cretaceous Research, 2019, 102: 160-169.
DOI URL |
[61] | 曹文心, 席党鹏, 黄清华, 等. 松辽盆地海侵事件: 松科1井钙质超微化石新证据[J]. 地质通报, 2016, 35(6): 866-871. |
[62] | 冯子辉, 霍秋立, 王雪, 等. 松辽盆地松科1井晚白垩世沉积地层有机地球化学研究[J]. 地学前缘, 2009, 16(5): 181-191. |
[63] |
HU J F, PENG P A, LIU M Y, et al. Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5: 9508.
DOI PMID |
[64] |
GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769.
DOI URL |
[65] |
WARREN J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
DOI URL |
[66] |
LAND L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
DOI URL |
[67] |
VASCONCELOS C, MCKENZIE J A, WARTHMANN R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317.
DOI URL |
[68] |
POULSEN C J, POLLARD D, WHITE T S. General circulation model simulation of the δ18O content of continental precipitation in the Middle Cretaceous: A model-proxy comparison[J]. Geology, 2007, 35(3): 199.
DOI URL |
[1] | KE Xing, ZHAO Qingfang, WU Piao, YANG Chuansheng, LIAO Jing, GONG Jianming. Characteristics and Evaluation of Cretaceous Source Rocks in the Northeastern Jiaolai Basin [J]. Geoscience, 2023, 37(05): 1358-1368. |
[2] | XU Liming, LIU Tao, ZHENG Jilin. Identification and Significance of Early Cretaceous Highly Fractionated Alihe Granites, Northern Great Xing’an Range [J]. Geoscience, 2023, 37(03): 613-626. |
[3] | ZHANG Gaixia, SUN Jinjiajie, GONG Qingjie, JIANG Biao, YAN Taotao. Geochemical Genes for the Weathering of Dolomite at the Shangmanggang Gold Deposit Area in Luxi, Yunnan, SW China [J]. Geoscience, 2023, 37(03): 801-812. |
[4] | DENG Ke, WANG Jingui, DONG Yujie, HE Linwu, YUAN Renhua, ZHANG Zeguo, CHEN Shouguan, XIN Tang. Genesis and Geological Significance of Late Cretaceous Intermediate Intrusions in Sangye, Tibet [J]. Geoscience, 2023, 37(02): 375-389. |
[5] | JIANG Zhongfa, JIANG Mengya, CHEN Hailong, LIU Longsong, WANG Xueyong, BIAN Baoli, LI Na. Thermal and Paleoenvironment Evolution of the Fengcheng Formation of Permian in Mahu Depression, Junggar Basin [J]. Geoscience, 2022, 36(04): 1118-1130. |
[6] | LI Zhu, ZHANG Dehui, ZHANG Rongzhen, SHEN Cunli, JIAO Shihao, LI Lin, ZHU Penglong. Geochronology and Petrogenesis of the Highly-Fractionated Early Cretaceous Narenwula Granite, Inner Mongolia, China [J]. Geoscience, 2022, 36(03): 848-861. |
[7] | BAI Xiangyu, MA Junwei, XIA Qingping, TAN Xianfeng, LI Kaikai. Geochemistry of Carbonates Near the Cambrian Series 3-Furongian Boundary and Its Paleoenvironmental Constraints [J]. Geoscience, 2022, 36(02): 729-741. |
[8] | ZHU Zhenjun, LI Qi, LI Jian, CHEN Hehe, HU Junjie, GENG Hui, DING Xiaojun, BAI Jinlian. Geomorphic Evolution and Sedimentary Response of Cretaceous Qingshuihe Formation in Moxizhuang-Yongjin Area, Junggar Basin [J]. Geoscience, 2022, 36(01): 105-117. |
[9] | ZHU Tong, SUN Zhenjun, YU Henan, WANG Chengyang, LIU Guanghu. Zircon U-Pb Geochronology, Hf isotope and Whole-Rock Geochemical Characteristics of Xiaohanshan Pluton in Haobugao Pb-Zn Deposit, Inner Mongolia [J]. Geoscience, 2022, 36(01): 282-294. |
[10] | CHEN Shumin, MIAO Yu, LIAO Jia, HE Qianping, CHENG Ming, ZHANG Zhenli, WU Shaoan, ZHANG Zhiming. Crustal Evolution Constraints from the Petrogenesis of Late Cretaceous Konglong Volcanics on Southern Margin of Central Lhasa Subterrane [J]. Geoscience, 2021, 35(06): 1713-1726. |
[11] | HUANG Qinghua, XI Dangpeng, WANG Hui, ZHANG Wenjing, WANG Jianwei, CAO Weifu, JIA Wo, WANG Lijing. Element and Isotope Geochemical Characteristics of Middle Permian Carbonates and Paleoenvironment in the Northern Songliao Basin [J]. Geoscience, 2021, 35(05): 1282-1295. |
[12] | LIU Airong, XU Yongjing, LIU Chenglin, PANG Ercheng. Geological Characteristics and Tectonic Evolution of Datong Basin [J]. Geoscience, 2021, 35(05): 1296-1310. |
[13] | LIU Yang, FANG Nianqiao, QIANG Menglin, JIA Lei, SONG Chaojie. Geochronology, Geochemistry, and Tectonic Significance of Mid-Cretaceous Andesites in Guangxi and Guangdong [J]. Geoscience, 2021, 35(04): 968-980. |
[14] | LIU Chang, YANG Zhusen, XU Peiyan, ZHAO Xiaoyan, XIA Wenjie, YANG Xiaoxu. Zircon U-Pb Age of Granitoids from the Mamu Pb-Zn Skarn Mineralized Area in Western Gangdese and Its Geological Significance [J]. Geoscience, 2021, 35(02): 466-476. |
[15] | ZHANG Haihua, LI Xiaohai, ZHANG Jian, ZHENG Yuejuan, CHEN Shuwang, ZHANG Dejun, SU Fei, BIAN Xiongfei, SUN Lei. Paleochronology, Geochemical Characteristics, and Geological Significance of the Upper Permian Linxi Formation in the Northern Songliao Basin [J]. Geoscience, 2021, 35(02): 568-578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||