[1]郑有业, 薛迎喜, 程力军, 等. 西藏驱龙超大型斑岩铜(钼) 矿床:发现、特征及意义 [J]. 地球科学: 中国地质大学学报, 2004, 29(1): 103-108.
[2]杨志明, 侯增谦, 宋玉财, 等. 西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿 [J]. 矿床地质, 2008, 27(3): 279-318.
[3]唐菊兴, 邓世林, 郑文宝, 等. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型 [J]. 矿床地质, 2011, 30(2): 179-196.
[4]Hou Z Q, Ma H W, Khin Z, et al. The Himalayan Yulong porphyry copper belt: produced by largescale strikeslip faulting at Eastern Tibet [J]. Economic Geology,2003, 98(1): 125-145.
[5]王功文, 陈建平. 矿床四维时空定量评价的新认识:以西藏玉龙斑岩铜矿床为例 [J]. 现代地质, 2004,18(4):537-542.
[6]王功文,杜杨松. 玉龙铜矿带成矿多元信息综合分析与找矿靶区优选 [J]. 现代地质, 2000,14(2):158-164.
[7]马鸿文.论藏东玉龙斑岩铜矿带成岩成矿物质来源 [J]. 现代地质, 1988,2(4):429-439.
[8]马鸿文.藏东玉龙斑岩铜矿带岩浆作用的物理化学条件 [J]. 现代地质, 1987,1(2):238-252.
[9]曲晓明, 辛洪波. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境 [J]. 地质通报, 2006, 25(7): 792-799.
[10]李金祥, 李光明, 秦克章, 等. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约 [J]. 岩石学报, 2008, 24(3): 531-543.
[11]佘宏全, 李进文, 马东方,等.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义 [J]. 矿床地质, 2009, 28(6): 737-746.
[12]Li J X, Qin K Z, Li G M, et al. Magmatichydrothermal evolution of the Cretaceous Duolong goldrich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from UPb and 40Ar/39Ar geochronology [J]. Journal of Asian Earth Sciences, 2011, 41(6): 525-536.
[13]李光明, 李金祥, 秦克章, 等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体: 流体包裹体证据 [J]. 岩石学报, 2007, 23(5): 935-952.
[14]Li J X, Li G M, Qin K Z, et al. Hightemperature magmatic fluid exsolved from magma at the Duobuza porphyry coppergold deposit, Northern Tibet [J]. Geofluids, 2011, 11: 134-143.
[15]祝向平, 陈华安, 马东方, 等,西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义 [J].岩石学报,2011,27(7): 2159-2164.
[16]Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the BangongNujiang suture zone [J]. Journal of Asian Earth Sciences, 2008, 32: 438-457.
[17]Shi R D. SHRIMP dating of the Bangong Lake SSZtype ophiolite: Constraints on the closure time of the ocean in the Bangong LakeNujiang River, northwestern Tibet [J]. Chinese Science Bulletin, 2007, 52 (7): 936-941.
[18]李光明, 段志明, 刘波, 等. 西藏班公湖—怒江结合带北缘多龙地区侏罗纪增生杂岩的识别及意义 [J]. 地质通报, 2011, 30(8): 1256-1260.
[19]祝向平, 陈华安, 马东方, 等. 西藏多不杂斑岩铜金矿床地质与蚀变 [J]. 地质与勘探, 2012, 48(2): 199-206.
[20]李建峰, 张志诚, 韩宝福. 内蒙古达茂旗北部闪长岩锆石SHRIMP U-Pb、角闪石40Ar/39Ar年代学及其地质意义 [J]. 岩石矿物学杂志, 2010, 29(6): 732-740.
[21]Ludwig K R. Users Manual for Isoplot/Ex Version 30:A Geochronological Toolkit for Microsoft Excel [M]. Berkeley: Berkeley Geochronology Center, 2003: 1-70.
[22]Reynolds P, Ravenhurst C, Zentilli M, et al. Highprecision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile [J]. Chemical Geology, 1998, 148(1/2): 45-60.
[23]Harris A C, Dunlap J, Reiners P W, et al. Multimillion year thermal history of a porphyry copper deposit: application of UPb, 40Ar/39Ar and (UTh)/He chronometers, Bajo de la Alumbrera coppergold deposit, Argentina [J]. Mineralium Deposita, 2008, 43(3):295-314.
[24]Deckart K, Clark A H, Aguilar C, et al. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile: implications of an integrated UPb and 40Ar/39Ar database [J]. Economic Geology, 2005, 100(5): 905-934.
[25]Perkins C, McDougall I, ClaouéLong J, et al. 40Ar/39Ar and UPb geochronology of the Goonumbla porphyry CuAu deposits, New South Wales, Australia [J]. Economic Geology, 1990, 85(2): 1808-1824.
[26]Parsons I, Brown W L, Smith J V. 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture [J]. Contributions to Mineralogy and Petrology, 1999, 136(1): 92-110.
[27]Lovera O M, Grove M, Harrison T M. Systematic analysis of Kfeldspar 40Ar/39Ar step heating results II: Relevance of laboratory argon diffusion properties to nature [J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1237-1255.
[28]Seedorff E, Dilles J H, Proffett J M J, et al. Porphyry deposits: characteristics and origin of hypogene features [M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 251-298.
[29]Sillitoe R H. Epochs of intrusionrelated copper mineralization in the Andes [J]. Journal of South American Earth Sciences, 1988, 1(1): 89-108.
[30]Redmond P B, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusioncentered systems: new insights from the Bingham porphyry ore deposit, Utah [J]. Geology, 2004, 32(3): 217-220.
[31]Rusk B, Reed M H, Dilles J H, et al. Compositions of magmatichydrothermal fluids determined by LAICPMS of fluid inclusions from the porphyry coppermolybdenum deposit at Butte, Montana [J]. Chemical Geology, 2004, 210(1/4): 173-199.
[32]Heinrich A C. Fluidfluid interactions in magmatichydrothermal ore formation [J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1): 363-387.
[33]Sillitoe R H. Porphyry copper systems [J]. Economic Geology, 2010, 105(1): 3-41.
[34]Sillitoe R H, Perelló J. Andean copper province: Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery [M]//Hedenquist J W, Thompson J F H , Goldfarb R J, et al. Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, 2005: 845-890.
[35]侯增谦, 曲晓明, 黄卫, 等. 冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带 [J]. 中国地质, 2001, 28(10): 27-40. |