Geoscience ›› 2021, Vol. 35 ›› Issue (03): 637-646.DOI: 10.19657/j.geoscience.1000-8527.2021.03.05
• Geochemistry • Previous Articles Next Articles
JIANG Tianyu1(), YU Tao1,2(
), HOU Qingye3, QI Hongbin1, WANG Jue3, MA Xudong3, YANG Zhongfang3
Received:
2020-11-13
Revised:
2021-01-06
Online:
2021-06-23
Published:
2021-06-24
Contact:
YU Tao
CLC Number:
JIANG Tianyu, YU Tao, HOU Qingye, QI Hongbin, WANG Jue, MA Xudong, YANG Zhongfang. Analysis of Soil Selenium Bioavailability and Its Influencing Factors Based on DGT Technology[J]. Geoscience, 2021, 35(03): 637-646.
指标 | 分析方法 | 检出限 |
---|---|---|
Al2O3 | XRF | 0.05* |
TFe2O3 | XRF | 0.05* |
pH | pH/ISE | 0.1** |
N | 加浓碱蒸馏-硼酸吸收-容量法 | 20 |
P | XRF | 10 |
S | XRF | 50 |
Se | AFS/ICP-MS | 0.01 |
Corg | 重铬酸钾氧化-容量法 | 0.1* |
Mn | AFS | 10 |
Table 1 Detection limit and analysis methods (unit: mg/kg)
指标 | 分析方法 | 检出限 |
---|---|---|
Al2O3 | XRF | 0.05* |
TFe2O3 | XRF | 0.05* |
pH | pH/ISE | 0.1** |
N | 加浓碱蒸馏-硼酸吸收-容量法 | 20 |
P | XRF | 10 |
S | XRF | 50 |
Se | AFS/ICP-MS | 0.01 |
Corg | 重铬酸钾氧化-容量法 | 0.1* |
Mn | AFS | 10 |
样品类型 | 样品数/个 | 最小值/ (mg/kg) | 最大值/ (mg/kg) | 算术平均值/ (mg/kg) | 标准偏差/ (mg/kg) | 标准误差 | 中位数/ (mg/kg) | 分布情况 |
---|---|---|---|---|---|---|---|---|
土壤 | 60 | 0.15 | 2.42 | 0.48 | 0.47 | 0.06 | 0.30 | 符合正态分布 |
玉米籽实 | 31 | 0.02 | 0.09 | 0.03 | 0.01 | 0.00 | 0.03 | 符合正态分布 |
水稻籽实 | 29 | 0.02 | 0.07 | 0.04 | 0.01 | 0.00 | 0.03 | 符合正态分布 |
Table 2 Selenium content in soil and crops
样品类型 | 样品数/个 | 最小值/ (mg/kg) | 最大值/ (mg/kg) | 算术平均值/ (mg/kg) | 标准偏差/ (mg/kg) | 标准误差 | 中位数/ (mg/kg) | 分布情况 |
---|---|---|---|---|---|---|---|---|
土壤 | 60 | 0.15 | 2.42 | 0.48 | 0.47 | 0.06 | 0.30 | 符合正态分布 |
玉米籽实 | 31 | 0.02 | 0.09 | 0.03 | 0.01 | 0.00 | 0.03 | 符合正态分布 |
水稻籽实 | 29 | 0.02 | 0.07 | 0.04 | 0.01 | 0.00 | 0.03 | 符合正态分布 |
土壤 类型 | 样品 数/个 | 黏土 含量/% | 有机质 含量/% | pH | S含量/ 10-6 | Al2O3 含量/% | P含量/ 10-6 | TFe2O3 含量/% | Mn含量/ 10-6 | N含量/ 10-6 | Se含量/ 10-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
黄壤 | 15 | 29.73±9.48 | 5.20±4.65 | 6.05±1.09 | 1 294±1 406 | 13.71±1.82 | 778±284 | 6.12±2.14 | 562±300 | 1 915±817 | 0.78±0.59 |
石灰土 | 6 | 22.46±6.07 | 5.57±4.26 | 5.18±1.00 | 2 433±4 879 | 15.62±2.16 | 1 082±451 | 9.27±3.79 | 713±519 | 2 049±902 | 1.06±0.78 |
水稻土 | 6 | 29.58±7.58 | 2.14±0.57 | 5.70±1.19 | 512±325 | 15.50±0.41 | 513±135 | 5.88±0.29 | 516±142 | 1 179±303 | 0.27±0.07 |
紫色土 | 33 | 27.90±7.61 | 2.08±0.71 | 5.60±0.90 | 378±197 | 15.08±1.42 | 563±178 | 5.25±0.99 | 481±193 | 1 228±386 | 0.28±0.09 |
全部样品 | 60 | 27.98±8.05 | 3.21±3.06 | 5.68±0.99 | 826±1720 | 14.84±1.66 | 664±290 | 5.93±2.06 | 528±267 | 1 477±665 | 0.48±0.47 |
Table 3 Soil physical and chemical indicators in the study area
土壤 类型 | 样品 数/个 | 黏土 含量/% | 有机质 含量/% | pH | S含量/ 10-6 | Al2O3 含量/% | P含量/ 10-6 | TFe2O3 含量/% | Mn含量/ 10-6 | N含量/ 10-6 | Se含量/ 10-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
黄壤 | 15 | 29.73±9.48 | 5.20±4.65 | 6.05±1.09 | 1 294±1 406 | 13.71±1.82 | 778±284 | 6.12±2.14 | 562±300 | 1 915±817 | 0.78±0.59 |
石灰土 | 6 | 22.46±6.07 | 5.57±4.26 | 5.18±1.00 | 2 433±4 879 | 15.62±2.16 | 1 082±451 | 9.27±3.79 | 713±519 | 2 049±902 | 1.06±0.78 |
水稻土 | 6 | 29.58±7.58 | 2.14±0.57 | 5.70±1.19 | 512±325 | 15.50±0.41 | 513±135 | 5.88±0.29 | 516±142 | 1 179±303 | 0.27±0.07 |
紫色土 | 33 | 27.90±7.61 | 2.08±0.71 | 5.60±0.90 | 378±197 | 15.08±1.42 | 563±178 | 5.25±0.99 | 481±193 | 1 228±386 | 0.28±0.09 |
全部样品 | 60 | 27.98±8.05 | 3.21±3.06 | 5.68±0.99 | 826±1720 | 14.84±1.66 | 664±290 | 5.93±2.06 | 528±267 | 1 477±665 | 0.48±0.47 |
黏土含量 | 有机质 | pH | Se | N | P | S | Mn | Al2O3 | TFe2O3 | |
---|---|---|---|---|---|---|---|---|---|---|
DGT-Se | -0.116 | 0.308* | -0.283* | 0.360** | 0.227 | 0.173 | 0.630** | 0.072 | 0.332* | 0.424** |
Table 4 Correlation between soil DGT-Se and soil physical and chemical indicators
黏土含量 | 有机质 | pH | Se | N | P | S | Mn | Al2O3 | TFe2O3 | |
---|---|---|---|---|---|---|---|---|---|---|
DGT-Se | -0.116 | 0.308* | -0.283* | 0.360** | 0.227 | 0.173 | 0.630** | 0.072 | 0.332* | 0.424** |
[1] |
TERRY N, ZAYED A M, DE SOUZA M P, et al. Selenium in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51:401-432.
DOI URL |
[2] |
SUPRIATION S, WENG L P, COMANS R N J. Selenium speciation and extractability in Dutch agricultural soils[J]. Science of the Total Environment, 2015, 532:368-382.
DOI URL |
[3] |
MATOS R P, LIMA V M P, WINDMOLLER C C, et al. Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil[J]. Journal of Geochemical Exploration, 2017, 172:195-202.
DOI URL |
[4] |
LYONS G H, GENC Y, SOOLE K, et al. Selenium increases seed production in Brassica[J]. Plant and Soil, 2009, 318(1/2): 73-80.
DOI URL |
[5] |
NGIGI P B, DU LAING G, MASINDE P W, et al. Selenium deficiency risk in central Kenya highlands: an assessment from the soil to the body[J]. Environmental Geochemistry and Health, 2020, 42(7): 2233-2250.
DOI URL |
[6] |
TSIOUBRI M, GASPARATOS D, ECONOMOU-ELIOPOULOS M. Selenium uptake by lettuce (Lactuca sativa L.) and berseem (Trifolium alexandrinum L.) as affected by the application of sodium selenate, soil acidity and organic matter content[J]. Plants, 2020, 9(5): 605.
DOI URL |
[7] |
HE Y Z, XIANG Y J, ZHOU Y Y, et al. Selenium contamination, consequences and remediation techniques in water and soils: A review[J]. Environmental Research, 2018, 164:288-301.
DOI URL |
[8] |
SUN H B. Association of soil selenium, strontium, and magnesium concentrations with Parkinson’s disease mortality rates in the USA[J]. Environmental Geochemistry and Health, 2018, 40(1): 349-357.
DOI URL |
[9] | 曾庆良, 余涛, 王锐. 土壤硒含量影响因素及富硒土地资源区划研究——以湖北恩施沙地为例[J]. 现代地质, 2018, 32(1): 105-112. |
[10] |
YU T, YANG Z F, LV Y Y, et al. The origin and geochemical cycle of soil selenium in a Se-rich area of China[J]. Journal of Geochemical Exploration, 2014, 139:97-108.
DOI URL |
[11] |
DINH Q T, CUI Z W, HUANG J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112:294-309.
DOI URL |
[12] |
ERMAKOV V, JOVANOVIC L. Selenium deficiency as a consequence of human activity and its correction[J]. Journal of Geochemical Exploration, 2010, 107(2): 193-199.
DOI URL |
[13] | JONES G D, DROZ B, GREVE P, et al. Selenium deficiency risk predicted to increase under future climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11): 2848-2853. |
[14] | 侯佳渝, 杨耀栋, 谢薇, 等. 天津市西郊富硒土壤地球化学特征和成因分析[J]. 现代地质, 2020, 34(3): 618-625. |
[15] |
DINH Q T, WANG M K, TRAN T A T, et al. Bioavailability of selenium in soil-plant system and a regulatory approach[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(6): 443-517.
DOI URL |
[16] | HAGAROVÁ I, ŽEMBERYOVÁ M, BAJCAN D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples[J]. Chemical Papers, 2005, 59(2): 93-98. |
[17] |
KESKINEN R, EKHOLM P, YLI-HALLA M, et al. Efficiency of different methods in extracting selenium from agricultural soils of Finland[J]. Geoderma, 2009, 153(1/2): 87-93.
DOI URL |
[18] |
MUNIER-LAMY C, DENEUX-MUSTIN S, MUSTIN C, et al. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass[J]. Journal of Environmental Radioactivity, 2007, 97(2/3): 148-158.
DOI URL |
[19] |
ZHAO C Y, REN J G, XUE C Z, et al. Study on the relationship between soil selenium and plant selenium uptake[J]. Plant and Soil, 2005, 277(1/2): 197-206.
DOI URL |
[20] |
PENG Q, WANG M K, CUI Z W, et al. Assessment of bioavai-lability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT)[J]. Environmental Pollution, 2017, 225:637-643.
DOI URL |
[21] |
ZHANG H, ZHAO F J, SUN B, et al. A new method to measure effective soil solution concentration predicts copper availability to plants[J]. Environmental Science & Technology, 2001, 35(12): 2602-2607.
DOI URL |
[22] |
WANG P F, WANG T, YAO Y, et al. A diffusive gradient-in-thin-film technique for evaluation of the bioavailability of Cd in soil contaminated with Cd and Pb[J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 556.
DOI URL |
[23] |
TANDY S, MUNDUS S, YNGVESSON J, et al. The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils[J]. Plant and Soil, 2011, 346(1/2): 167-180.
DOI URL |
[24] |
SONG N N, WANG F L, MA Y B, et al. Using DGT to assess cadmium bioavailability to ryegrass as influenced by soil properties[J]. Pedosphere, 2015, 25(6): 825-833.
DOI URL |
[25] |
PENG Q, WANG D, WANG M, et al. Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction[J]. Environmental Pollution, 2020, 256:113414.
DOI URL |
[26] | 杨忠芳, 余涛, 李敏, 等. DZ/T 0295—2016 土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016: 15-17. |
[27] |
MALIK J A, GOEL S, KAUR N, et al. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms[J]. Environmental and Experimental Botany, 2012, 77:242-248.
DOI URL |
[28] | 严明书, 龚媛媛, 杨乐超, 等. 重庆土壤硒的地球化学特征及经济意义[J]. 物探与化探, 2014, 38(2): 325-330. |
[29] |
WANG Z J, GAO Y X. Biogeochemical cycling of selenium in Chinese environments[J]. Applied Geochemistry, 2001, 16(11/12): 1345-1351.
DOI URL |
[30] | 余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. |
[31] | 谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989: 39. |
[32] | 刘道荣, 徐虹, 周漪, 等. 浙西常山地区富硒土壤特征及成因分析[J]. 物探与化探, 2019, 43(3): 658-666. |
[33] |
WANG D, XUE M Y, WANG Y K, et al. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors[J]. Science of the Total Environment, 2019, 657:871-881.
DOI URL |
[34] |
AHMAD M, LEE S S, LEE S E, et al. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils[J]. Journal of Soils and Sediments, 2017, 17(3): 717-730.
DOI URL |
[35] |
LI Z, LIANG D L, PENG Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavai-lability: A review[J]. Geoderma, 2017, 295:69-79.
DOI URL |
[36] | 吴俊. 福建省寿宁县富硒土壤地球化学特征[J]. 物探与化探, 2018, 42(2): 386-391. |
[37] |
WANG Z J, GAO Y X, BELZILE N. Microwave digestion of environmental and natural waters for selenium speciation[J]. Analytical Chemistry, 2001, 73(19): 4711-4716.
DOI URL |
[38] |
PEAK D. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface[J]. Journal of Colloid and Interface Science, 2006, 303(2): 337-345.
DOI URL |
[39] |
LI Z, MAN N, WANG S S, et al. Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties[J]. Journal of Soils and Sediments, 2015, 15(5): 1150-1158.
DOI URL |
[40] |
JOHNSON C C, GE X, GREEN K A, et al. Selenium distribution in the local environment of selected villages of the Keshan Disease belt, Zhangjiakou District, Hebei Province, People’s Republic of China[J]. Applied Geochemistry, 2000, 15(3): 385-401.
DOI URL |
[41] |
SILVA E C, WADT L H O, SILVA K E, et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region[J]. Chemosphere, 2017, 188:650-658.
DOI URL |
[42] | TOLU J, THIRY Y, BUENO M, et al. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich[J]. Science of the Total Environment, 2014, 479:93-101. |
[43] |
MULLER J, ABDELOUAS A, RIBET S, et al. Sorption of selenite in a multi-component system using the “dialysis membrane” method[J]. Applied Geochemistry, 2012, 27(12): 2524-2532.
DOI URL |
[44] |
ÁVILA P A, FAQUIN V, ÁVILA F W, et al. Phosphorus and sulfur in a tropical soil and their effects on growth and selenium accumulation in Leucaena leucocephala(Lam.) de Wit[J]. Environmental Science and Pollution Research, 2020, 27:44060-44072.
DOI URL |
[45] | 陈怀满. 环境土壤学[M]. 2版. 北京: 科学出版社, 2010: 176-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||