Geoscience ›› 2018, Vol. 32 ›› Issue (01): 86-94.DOI: 10.19657/j.geoscience.1000-8527.2018.01.08
• Geochemistry • Previous Articles Next Articles
LI Ping1(), HUANG Yong2, LIN Yun1, HUA Peixue1, YUAN Guoli1(
)
Received:
2017-09-06
Revised:
2017-12-12
Online:
2018-02-10
Published:
2018-02-05
CLC Number:
LI Ping, HUANG Yong, LIN Yun, HUA Peixue, YUAN Guoli. Distribution,Source Identification and Risk Assessment of Heavy Metals in Topsoil of Huairou District in Beijing[J]. Geoscience, 2018, 32(01): 86-94.
潜在生态风险 系数(E(i)) | 单因子污染 的生态风险 | 潜在生态风险 指数(RI) | 潜在生态 危害程度 |
---|---|---|---|
E(i)<40 | 低 | RI<150 | 低 |
40≤E(i)<80 | 中 | 150≤RI<300 | 中 |
80≤E(i)<160 | 高 | 300≤RI<600 | 高 |
160≤E(i)<320 | 很高 | 600≤RI | 重 |
320≤E(i) | 极高 | — | — |
Table 1 Potential ecological risk coefficient (E(i)) and pollution levels risk indices(RI) of the heavy metals
潜在生态风险 系数(E(i)) | 单因子污染 的生态风险 | 潜在生态风险 指数(RI) | 潜在生态 危害程度 |
---|---|---|---|
E(i)<40 | 低 | RI<150 | 低 |
40≤E(i)<80 | 中 | 150≤RI<300 | 中 |
80≤E(i)<160 | 高 | 300≤RI<600 | 高 |
160≤E(i)<320 | 很高 | 600≤RI | 重 |
320≤E(i) | 极高 | — | — |
重金属 | 北京地区背 景值[ | 富集 系数 | 最小值 | 最大值 | 均值 | 变异系 数/% |
---|---|---|---|---|---|---|
Cr | 60.8 | 0.84 | 14.00 | 91.0 | 50.9 | 20.7 |
V | 79.2 | 0.90 | 31.50 | 114.0 | 71.3 | 19.2 |
Ni | 24.7 | 0.88 | 1.40 | 53.2 | 21.7 | 32.5 |
As | 7.7 | 0.95 | 1.29 | 15.6 | 7.3 | 36.5 |
Pb | 23.7 | 1.09 | 24.90 | 22.6 | 25.9 | 37.5 |
Zn | 57.5 | 1.33 | 33.70 | 77.5 | 76.5 | 38.6 |
Hg | 0.059 | 0.71 | 0.007 | 0.372 | 0.042 | 93.6 |
Cd | 0.119 | 1.41 | 0.047 | 0.140 | 0.168 | 68.1 |
Table 2 Heavy metal concentrations in the topsoil of the study area(mg/kg)
重金属 | 北京地区背 景值[ | 富集 系数 | 最小值 | 最大值 | 均值 | 变异系 数/% |
---|---|---|---|---|---|---|
Cr | 60.8 | 0.84 | 14.00 | 91.0 | 50.9 | 20.7 |
V | 79.2 | 0.90 | 31.50 | 114.0 | 71.3 | 19.2 |
Ni | 24.7 | 0.88 | 1.40 | 53.2 | 21.7 | 32.5 |
As | 7.7 | 0.95 | 1.29 | 15.6 | 7.3 | 36.5 |
Pb | 23.7 | 1.09 | 24.90 | 22.6 | 25.9 | 37.5 |
Zn | 57.5 | 1.33 | 33.70 | 77.5 | 76.5 | 38.6 |
Hg | 0.059 | 0.71 | 0.007 | 0.372 | 0.042 | 93.6 |
Cd | 0.119 | 1.41 | 0.047 | 0.140 | 0.168 | 68.1 |
重金属 | 主成分 | ||
---|---|---|---|
1 | 2 | 3 | |
Cr | 0.918 | 0.056 | 0.044 |
V | 0.863 | 0.035 | -0.045 |
Ni | 0.844 | 0.010 | 0.060 |
As | 0.747 | 0.167 | 0.067 |
Pb | 0.117 | 0.652 | 0.364 |
Zn | 0.178 | 0.747 | 0.403 |
Hg | -0.025 | 0.904 | -0.104 |
Cd | 0.007 | 0.195 | 0.935 |
特征值 | 3.144 | 2.015 | 0.807 |
方差/% | 36.3 | 23.4 | 14.9 |
累积方差/% | 36.3 | 59.7 | 74.6 |
Table 3 Principal component analysis of the heavy metal concentrations in the soil of the study area
重金属 | 主成分 | ||
---|---|---|---|
1 | 2 | 3 | |
Cr | 0.918 | 0.056 | 0.044 |
V | 0.863 | 0.035 | -0.045 |
Ni | 0.844 | 0.010 | 0.060 |
As | 0.747 | 0.167 | 0.067 |
Pb | 0.117 | 0.652 | 0.364 |
Zn | 0.178 | 0.747 | 0.403 |
Hg | -0.025 | 0.904 | -0.104 |
Cd | 0.007 | 0.195 | 0.935 |
特征值 | 3.144 | 2.015 | 0.807 |
方差/% | 36.3 | 23.4 | 14.9 |
累积方差/% | 36.3 | 59.7 | 74.6 |
重金属 | 潜在生态风险系数E(i) | ||
---|---|---|---|
平均值 | 最小值 | 最大值 | |
Cr | 1.70 | 0.46 | 6.25 |
V | 1.81 | 0.64 | 4.14 |
Ni | 4.50 | 0.29 | 45.14 |
As | 9.61 | 1.68 | 24.16 |
Pb | 5.46 | 2.70 | 41.20 |
Zn | 1.33 | 0.59 | 9.07 |
Hg | 31.27 | 4.75 | 694.92 |
Cd | 42.30 | 11.85 | 385.71 |
Table 4 The potential ecological risk factors (E(i)) of the heavy metals
重金属 | 潜在生态风险系数E(i) | ||
---|---|---|---|
平均值 | 最小值 | 最大值 | |
Cr | 1.70 | 0.46 | 6.25 |
V | 1.81 | 0.64 | 4.14 |
Ni | 4.50 | 0.29 | 45.14 |
As | 9.61 | 1.68 | 24.16 |
Pb | 5.46 | 2.70 | 41.20 |
Zn | 1.33 | 0.59 | 9.07 |
Hg | 31.27 | 4.75 | 694.92 |
Cd | 42.30 | 11.85 | 385.71 |
[1] | 陆泗进, 王业耀, 何立环. 湖南省某地农田土壤重金属生态风险评价研究[J]. 环境科学与技术, 2014, 37(12):100-105. |
[2] | 栾文楼, 温小亚, 马忠社, 等. 冀东平原土壤中重金属元素的地球化学特征[J]. 现代地质, 2008, 22(6):939-947. |
[3] | ALLOWAY B J. Sources of heavy metals and metalloids in soils[J]. Heavy Metals in Soils, 2013, 22:11-50. |
[4] |
NICHOLSON F A, SMITH S R, ALLOWAY B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. Science of the Total Environment, 2003, 311(1/3): 205-219.
DOI URL |
[5] |
LUO Lei, MA Yibing, ZHANG Shuzhen, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90(8): 2524-2530.
DOI PMID |
[6] |
BELON E, BOISSON M, DEPORTES I Z, et al. An inventory of trace elements inputs to French agricultural soils[J]. Science of the Total Environment, 2012, 439:87-95.
DOI URL |
[7] |
TENG Yanguo, WU Jin, LU Sijin, et al. Soil and soil environmental quality monitoring in China: a review[J]. Environment International, 2014, 69:177-199.
DOI PMID |
[8] |
SUN Yuebing, ZHOU Qixing, XIE Xiaokui, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China[J]. Journal of Hazardous Materials, 2010, 174(1/3):455-462.
DOI URL |
[9] |
REDON P O, BUR T, GUIRESSE M, et al. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of southwestern France[J]. Geoderma, 2013, 206(9):112-122.
DOI URL |
[10] |
YUAN Guoli, SUN Tianhe, HAN Peng, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130:15-21.
DOI URL |
[11] | ZHAO Long, XU Yafei, HOU Hong, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014, 468-469:654-662. |
[12] |
COLGAN A, HANKARD P K, SPURGEON D J, et al. Closing the Loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions[J]. Environmental Toxicology and Chemistry, 2003, 22(5):970-976.
PMID |
[13] |
GIL C, BOLUDA R, RAMOS J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain)[J]. Chemosphere, 2004, 55(7):1027-1034.
DOI URL |
[14] | 胡克林, 张凤荣, 吕贻忠, 等. 北京市大兴区土壤重金属含量的空间分布特征[J]. 环境科学学报, 2004, 24(3):463-468. |
[15] | 付华, 吴雁华, 魏立华. 北京南部地区农业土壤重金属分布特征与评价[J]. 农业环境科学学报, 2006, 25(1):182-185. |
[16] |
XIA Xinghui, CHEN Xi, LIU Ruimin, et al. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 2011, 186(2/3):2043-2050.
DOI URL |
[17] |
WANG Meie, BAI Yanying, CHEN Weiping, et al. A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China[J]. Environment Pollution, 2012, 161:235-242.
DOI URL |
[18] |
ZHENG Yuanming, CHEN Tongbin, HE Jizheng. Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China[J]. Journal of Soils and Sediments, 2008, 8(1):51-58.
DOI URL |
[19] |
WU Shan, XIA Xinghui, LIN Chunye, et al. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985—2008)[J]. Journal of Hazardous Materials, 2010, 179(1/3):860-868.
DOI URL |
[20] |
LU Anxiang, WANG Jihua, QIN Xiangyang, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China[J]. Science of the Total Environment, 2012, 425(1):66-74.
DOI URL |
[21] |
FACCHINELLI A, SACCHI E, MALLEN L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environment Pollution, 2001, 114(3):313-324.
DOI URL |
[22] |
YUAN Guoli, SUN Tianhe, HAN Peng, et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: typical urban renewal area in Beijing, China[J]. Journal of Geochemical Exploration, 2014, 136:40-47.
DOI URL |
[23] |
GOOVAERTS P. Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial soil information[J]. Journal of Soil Science, 1992, 43(4):597-619.
DOI URL |
[24] |
LIN Yuping. Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals[J]. Environmental Geology, 2002, 42(1):1-10.
DOI URL |
[25] |
NANOS N, RODRÍGUEZ MARTÍN J A. Multiscale analysis of heavy metal contents spatial in soils: variability in the Duero river basin (Spain)[J]. Geoderma, 2012, 189/190:554-562.
DOI URL |
[26] |
Lü Jianshu, LIU Yang, ZHANG Zulu, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils[J]. Journal of Hazardous Materials, 2013, 261(13):387-397.
DOI URL |
[27] |
MAMAT Z, YIMIT H, JI R Z, et al. Source identification and hazardous risk delineation of heavy metal contamination in Yanqi basin, northwest China[J]. Science of the Total Environment, 2014, 493:1098-1111.
DOI URL |
[28] |
HOU Yong, GAO Zhiling, HEIMANN L, et al. Nitrogen Balances of smallholder farms in major cropping systems in a peri-urban area of Beijing, China[J]. Nutrient Cycling in Agroecosystems, 2012, 92(3):347-361.
DOI URL |
[29] | 蔡庆空, 蒋金豹, 崔希民, 等. 环境因子对土壤水分空间异质性的影响——以北京市怀柔区为例[J]. 山地学报, 2013, 13(3):294-299. |
[30] |
HAKANSON L. An ecological risk index for aquatic pollution control: a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
DOI URL |
[31] | 张芬, 杨长明, 潘睿捷, 等. 青山水库表层沉积物重金属污染特征及生态风险评价[J]. 应用生态学报, 2013, 24(9):2625-2630. |
[32] | WANG Hongyan, LU Shenggao. Spatial distribution, source identification and affecting factors of heavy metals contamination in urban-suburban soils of Lishui city, China[J]. Journal of Environment and Earth Science, 2011, 64(7): 1921-1929. |
[33] | 陈同斌, 郑袁明, 陈煌, 等. 北京市土壤重金属含量背景值的系统研究[J]. 环境科学, 2004, 25(1):117-122. |
[34] |
ZHAO Yongcun, WANG Zhigang, SUN Weixia, et al. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China[J]. Geoderma, 2010, 156(3/4): 216-227.
DOI URL |
[35] | 赵小明, 刘圣德, 张权绪, 等. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比[J]. 地质学报, 2011, 85(4):576-585. |
[36] |
HAN Yongming, DU Peixuan, CAO Junji, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China[J]. Science of the Total Environment, 2006, 355(1/3):176-186.
DOI URL |
[37] |
LUO Wei, WANG Tieyu, LU Yonglong, et al. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils[J]. Environmental Pollution, 2007, 146(2):567-576.
DOI PMID |
[38] |
杨勇, 刘爱军, 单玉梅, 等. 锡林郭勒露天煤矿矿区草原土壤重金属分布特征[J]. 生态环境学报, 2016, 25(5): 885-892.
DOI |
[39] |
FACCHINELLIA A, SACCHI E, MALLEN L. Multivariate statistics and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 2011, 114(3):313-324.
DOI URL |
[40] | 谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3):768-774. |
[41] | 董辰寅, 张卫国, 王冠, 等. 上海宝山区城市土壤铅污染来源的同位素判别[J]. 环境科学, 2012, 33(3):754-759. |
[42] | 赵秀峰, 王强盛, 石宁宁, 等. 石化园区周边农田土壤重金属污染分析与评价[J]. 环境科学学报, 2010, 30(1):133-141. |
[43] |
LUO Xiaosan, YU Shen, ZHU Yongguan, et al. Trace metal contamination in urban soils of China[J]. Science of the Total Environment, 2012, 421/422(3):17-30.
DOI URL |
[44] |
BI Xiangyang, LIANG Siyuang, LI Xiangdong. A novel in situ method for sampling urban soil dust: particle size distribution, trace metal concentrations, and stable lead isotopes[J]. Environmental Pollution, 2013, 177(4):48-57.
DOI URL |
[45] |
ZHU Zongmin, SUN Guangyi, BI Xiangyang, et al. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analysis[J]. Atmospheric Environment, 2013, 77(3):9-15.
DOI URL |
[46] |
CHEN Xi, XIA Xinghui, WU Shan, et al. mercury in urban soils with various types of land use in Beijing, China[J]. Environmental Pollution, 2010, 158(1):48-54.
DOI PMID |
[47] | 从源, 郑萍, 陈岳龙, 等. 北京农田生态系统土壤重金属元素的生态风险评价[J]. 地质通报, 2008, 27(5):681-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||