[1] |
HOCHELLA M F Jr, LOWER S K, MAURICE P A, et al. Nanominerals, mineral nanoparticles, and Earth systems[J]. Science, 2008, 319(5870): 1631-1635.
DOI
PMID
|
[2] |
ILGEN A G, KUKKADAPU R K, LEUNG K, et al. “Switching on” iron in clay minerals[J]. Environmental Science: Nano, 2019, 6(6): 1704-1715.
|
[3] |
GIL-LOZANO C, FAIRÉN A G, MUÑOZ-IGLESIAS V, et al. Constraining the preservation of organic compounds in Mars analog nontronites after exposure to acid and alkaline fluids[J]. Scientific Reports, 2020, 10: 15097.
|
[4] |
SCHWERTMANN U. Solubility and dissolution of iron oxides[J]. Plant and Soil, 1991, 130(1): 1-25.
|
[5] |
JAMBOR J L, DUTRIZAC J E. Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide[J]. Chemical Reviews, 1998, 98(7): 2549-2586.
PMID
|
[6] |
SHIMIZU M, ZHOU J H, SCHRÖDER C, et al. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates[J]. Environmental Science & Technology, 2013, 47(23): 13375-13384.
|
[7] |
KAPPLER A. Geomicrobiological cycling of iron[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1): 85-108.
|
[8] |
杨琼, 杨忠芳, 季峻峰, 等. 广西贵港岩溶地质高背景区富含铁锰结核土壤的矿物学与重金属地球化学特征[J]. 现代地质, 2021, 35(5): 1450-1458.
|
[9] |
VODYANITSKII Y N. Iron hydroxides in soils: A review of publications[J]. Eurasian Soil Science, 2010, 43(11): 1244-1254.
|
[10] |
王小明. 几种亚稳态铁氧化物的结构、形成转化及其表面物理化学特性[D]. 武汉: 华中农业大学, 2015.
|
[11] |
STUMPF S, STUMPF T, DARDENNE K, et al. Sorption of Am(III) onto 6-line-ferrihydrite and its alteration products: Investigations by EXAFS[J]. Environmental Science & Technology, 2006, 40(11): 3522-3528.
|
[12] |
DAS S, HENDRY M J, ESSILFIE-DUGHAN J. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature[J]. Environmental Science & Technology, 2011, 45(1): 268-275.
|
[13] |
YAN L X, CHEN Q Z, YANG Y X, et al. The significant role of montmorillonite on the formation of hematite nanoparticles from ferrihydrite under heat treatment[J]. Applied Clay Science, 2021, 202: 105962.
|
[14] |
CISMASU A C, MICHEL F M, STEBBINS J F, et al. Properties of impurity-bearing ferrihydrite I. Effects of Al content and precipitation rate on the structure of 2-line ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2012, 92: 275-291.
|
[15] |
YAN L X, ZHU R L, LIU J, et al. Effects of fullerol and graphene oxide on the phase transformation of two-line ferrihydrite[J]. ACS Earth and Space Chemistry, 2020, 4(3): 335-344.
|
[16] |
MARTÍNEZ C E, MCBRIDE M B. Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: Solid phase transformation and metal solubility after aging and thermal treatment[J]. Clays and Clay Minerals, 1998, 46(5): 537-545.
|
[17] |
JANG J H, DEMPSEY B A, CATCHEN G L, et al. FeII, Effects of Zn(II), CuII, MnII, NO3-, or SO42- at pH 6.5 and 8.5 on transformations of hydrous ferric oxide (HFO) as evidenced by Mössbauer spectroscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 221(1/2/3): 55-68.
|
[18] |
FRANCISCO P C M, SATO T, OTAKE T, et al. Mechanisms of Se(IV) co-precipitation with ferrihydrite at acidic and alkaline conditions and its behavior during aging[J]. Environmental Science & Technology, 2018, 52(8): 4817-4826.
|
[19] |
LI Y, YANG M J, PENTRAK M, et al. Carbonate-enhanced transformation of ferrihydrite to hematite[J]. Environmental Science & Technology, 2020, 54(21): 13701-13708.
|
[20] |
CORNELL R M, GIOVANOLI R, SCHINDLER P W. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media[J]. Clays and Clay Minerals, 1987, 35(1): 21-28.
|
[21] |
DAS S, HENDRY M J, ESSILFIE-DUGHAN J. Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10[J]. Environmental Science & Technology, 2011, 45(13): 5557-5563.
|
[22] |
LU Y, HU S W, WANG Z M, et al. Ferrihydrite transformation under the impact of humic acid and Pb: Kinetics, nanoscale mechanisms, and implications for C and Pb dynamics[J]. Environmental Science: Nano, 2019, 6(3): 747-762.
|
[23] |
CORNELL R M, SCHNEIDER W, GIOVANOLI R. The effect of nickel on the conversion of amorphous iron(III) hydroxide into more crystalline iron oxides in alkaline media[J]. Journal of Chemical Technology & Biotechnology, 1992, 53(1): 73-79.
|
[24] |
YANG L, STEEFEL C I, MARCUS M A, et al. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions[J]. Environmental Science & Technology, 2010, 44(14): 5469-5475.
|
[25] |
SHENG A X, LIU J, LI X X, et al. Labile Fe(III) from sorbed Fe(II) oxidation is the key intermediate in Fe(II)-catalyzed ferrihydrite transformation[J]. Geochimica et Cosmochimica Acta, 2020, 272: 105-120.
|
[26] |
SCHWERTMANN U, FRIEDL J, STANJEK H, et al. The effect of clay minerals on the formation of goethite and hematite from ferrihydrite after 16 years’ ageing at 25℃ and pH 4-7[J]. Clay Minerals, 2000, 35(4): 613-623.
|
[27] |
BANFIELD J F, ZHANG H. Nanoparticles in the environment[J]. Reviews in Mineralogy and Geochemistry, 2001, 44(1): 1-58.
|
[28] |
HOCHELLA M F Jr, MOGK D W, RANVILLE J, et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system[J]. Science, 2019, 363: eaau8299.
|
[29] |
WANG Q, LI J X, CHEN C L, et al. Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites[J]. Chemical Engineering Journal, 2011, 174(1): 126-133.
|
[30] |
SUI S M, SHA J W, DENG X Y, et al. Boosting the charge transfer efficiency of metal oxides/carbon nanotubes composites through interfaces control[J]. Journal of Power Sources, 2021, 489: 229501.
|
[31] |
NIYITANGA T, KIM H. Hematite-nickel oxide/carbon nanotube composite catalyst for oxygen evolution reaction[J]. Materials Chemistry and Physics, 2022, 275: 125266.
|
[32] |
CORNELL R M, SCHWERTMANN U. The Iron Oxides:Structure, Properties, Reactions, Occurrences and Uses[M]. Hoboken: John Wiley & Sons, Inc, 2004.
|
[33] |
SMITH B, WEPASNICK K, SCHROTE K E, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2009, 43(3): 819-825.
|
[34] |
刘松锋. 多壁碳纳米管的处理及其与氧化硼的相互作用[D]. 哈尔滨: 哈尔滨工业大学, 2006.
|
[35] |
许鹏. 碳纳米管表面处理与分散的研究[D]. 广州: 华南理工大学, 2018.
|
[36] |
SHULGA Y M, TIEN T C, HUANG C C, et al. XPS study of fluorinated carbon multi-walled nanotubes[J]. Journal of Electron Spectroscopy and Related Phenomena, 2007, 160(1/2/3): 22-28.
|
[37] |
王健. 碳纳米管表面修饰及分散性能的研究[D]. 南昌: 南昌大学, 2012.
|
[38] |
方梦园. 碳纳米管与天然有机质的相互作用研究[D]. 昆明: 昆明理工大学, 2020.
|
[39] |
刘睿, 左蕾, 张鹏, 等. 纳米地质学:量子科学走进地质学的桥梁[J]. 地学前缘, 2023, 30(3): 308-312.
DOI
|
[40] |
LIU J, ZHU R L, XU T Y, et al. Interaction of polyhydroxy fullerenes with ferrihydrite: Adsorption and aggregation[J]. Journal of Environmental Sciences (China), 2018, 64: 1-9.
|
[41] |
PEDERSEN H D, POSTMA D, JAKOBSEN R, et al. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II)[J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 3967-3977.
|