[1] |
郭承基, 王中刚. 矿物演化[J]. 矿物学报, 1981, 1(1): 1-9.
|
[2] |
陈光远. 成因矿物学与找矿矿物学发展现状[J]. 矿物岩石地球化学通报, 1987, 6(2): 68-70.
|
[3] |
HAZEN R M, PAPINEAU D, BLEEKER W, et al. Mineral evolution[J]. American Mineralogist, 2008, 93(11/12): 1693-1720.
|
[4] |
HAZEN R M, MORRISON S M. On the paragenetic modes of minerals: A mineral evolution perspective[J]. American Mineralogist, 2022, 107(7): 1262-1287.
|
[5] |
KENDALL B, ANBAR A D, KAPPLER A, et al. The global iron cycle[M]. KNOLL A H, CANFIELD D E, KONHAUSER K O. Fundamentals of geobiology. America: Blackwell Publishing Ltd. 2012: 65-92.
|
[6] |
WADE J, BYRNE D J, BALLENTINE C J, et al. Temporal variation of planetary iron as a driver of evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(51): e2109865118.
|
[7] |
KAPPLER A, BRYCE C, MANSOR M, et al. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
DOI
PMID
|
[8] |
吴琪, 仇巍巍, 江拓, 等. 中国铁矿勘探开发及供需形势[J]. 地质论评, 2024, 70(A1): 111-112.
|
[9] |
WANG P, FU F G, LIU T G. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285(0): 131435.
|
[10] |
GONG Y S, WANG Y, LIN N P, et al. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives[J]. Environmental Pollution, 2022, 299: 118871.
|
[11] |
HAZEN R M, DOWNS R T, ELEISH A, et al. Data-driven discovery in mineralogy: Recent advances in data resources, analysis, and visualization[J]. Engineering, 2019, 5(3): 397-405.
|
[12] |
LU A H. Mineral evolution heralds a new era for mineralogy[J]. American Mineralogist, 2022, 107(7): 1217-1218.
|
[13] |
WANG C S, HAZEN R M, CHENG Q M, et al. The deep-time digital earth program: data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): 156-166.
|
[14] |
李晓彦, 张超. 大数据和机器学习在矿物学研究中的应用[J]. 矿物岩石地球化学通报, 2023, 42(2): 253-266, 252.
|
[15] |
CHEN G X, CHENG Q M, LYONS T W, et al. Reconstructing Earth’s atmospheric oxygenation history using machine learning[J]. Nature Communications, 2022, 13(1): 5862.
|
[16] |
KRISSANSEN-TOTTON J, ARNEY G N, CATLING D C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4105-4110.
|
[17] |
LI J, CHENG J H, SHI J Y, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement[M]. DAVID J, SALLY L. Advances in computer science and information engineering: Volume 2. 2012: 553-558.
|
[18] |
沈花玉, 王兆霞, 高成耀, 等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008, 24 (5): 13-15.
|
[19] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
[20] |
KHADEMIAN M, IMLAY J A. How microbes evolved to tolerate oxygen[J]. Trends in Microbiology, 2021, 29(5): 428-440.
DOI
PMID
|
[21] |
LYONS T W, DIAMOND C W, PLANAVSKY N J, et al. Oxygenation, life, and the planetary system during Earth’s middle history: An overview[J]. Astrobiology, 2021, 21(8): 906-923.
|
[22] |
HAZEN R M. Paleomineralogy of the Hadean Eon: A preliminary species list[J]. American Journal of Science, 2013, 313(9): 807-843.
|
[23] |
TANG Q, ZHENG W T, ZHANG S H, et al. Quantifying the global biodiversity of Proterozoic eukaryotes[J]. Science, 2024, 386: eadm9137.
|
[24] |
FAN J X, SHEN S Z, ERWIN D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277.
|
[25] |
HAZEN R M, LIU X-M, DOWNS R T, et al. Mineral evolution: Episodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere[M]. KELLEY K D, GOLDEN H C. Building exploration capability for the 21st century. Littleton: Society of Economic Geologists. 2014: 1-15.
|
[26] |
翟明国. 华北前寒武纪成矿系统与重大地质事件的联系[J]. 岩石学报, 2013, 29(5): 1759-1773.
|
[27] |
BEKKER A, SLACK J F, PLANAVSKY N, et al. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
|
[28] |
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172(1): 140-177.
|
[29] |
KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
|
[30] |
SCHWERTMANN U, MURAD E. Effect of pH on the formation of goethite and hematite from ferrihydrite[J]. Clays and Clay Minerals, 1983, 31(4): 277-284.
|
[31] |
OHMOTO H. Nonredox transformations of magnetite-hematite in hydrothermal systems[J]. Economic Geology, 2003, 98(1): 157-161.
|
[32] |
宋颜, 董少春, 胡欢, 等. 基于大数据的铌钽矿物全球时空分布特征分析[J]. 地学前缘, 2023, 30(5): 197-204.
DOI
|
[33] |
唐鸣昊, 滕辉, 陆现彩, 等. 砷矿物演化与矿物生态初探[J]. 矿物岩石地球化学通报, 2024, 43(2): 418-427.
|
[34] |
ZHUANG Z Y, ZHANG Y, LI Y, et al. Evolutionary dynamics of redox-sensitive minerals reveal details and possible regulatory mechanisms of Earth’s oxygenation events[J]. Earth and Planetary Science Letters, 2024, 626: 118528.
|
[35] |
TANG H S, CHEN Y J. Global glaciations and atmospheric change at ca. 2.3 Ga[J]. Geoscience Frontiers, 2013, 4(5): 583-596.
|
[36] |
HOFFMANN K H, CONDON D J, BOWRING S A, et al. U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan Glaciation[J]. Geology, 2004, 32(9): 817-820.
|
[37] |
ZHANG S H, JIANG G Q, HAN Y G. The age of the Nantuo Formation and Nantuo glaciation in South China[J]. TERRA NOVA, 2008, 20(4): 289-294.
|
[38] |
MACDONALD F A, SCHMITZ M D, CROWLEY J L, et al. Calibrating the Cryogenian[J]. Science, 2010, 327: 1241-1243.
DOI
PMID
|
[39] |
赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565.
|
[40] |
MIAO L Y, YIN Z J, KNOLL A H, et al. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China[J]. Science advances, 2024, 10(4): eadk3208.
|
[41] |
ILBERT M, BONNEFOY V. Insight into the evolution of the iron oxidation pathways[J]. Biochimica et Biophysica Acta-Bioenergetics, 2013, 1827(2): 161-175.
|
[42] |
王芙仙, 郑世玲, 邱浩, 等. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程[J]. 微生物学报, 2018, 58(4): 573-583.
|
[43] |
张志飞, 刘璠, 梁悦, 等. 寒武纪生命大爆发与地球生态系统起源演化[J]. 西北大学学报(自然科学版), 2021, 51(6): 1065-1106.
|
[44] |
朱永官, 段桂兰, 陈保冬, 等. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学(地球科学), 2014, 44(6): 1107-1116.
|