欢迎访问现代地质!

现代地质 ›› 2025, Vol. 39 ›› Issue (03): 552-559.DOI: 10.19657/j.geoscience.1000-8527.2025.040

• 机器学习与矿物学应用 • 上一篇    下一篇

深时铁矿物分布特征及演化趋势预测初探

黄思艺1(), 徐靖博1, 魏林宏2,*(), 蔡元峰1   

  1. 1.南京大学地球科学与工程学院, 江苏 南京 210023
    2.南京大学前沿科学学院,江苏 苏州 215163
  • 出版日期:2025-06-10 发布日期:2025-07-03
  • 通信作者: *魏林宏,女,副教授,1972年出生,主要从事水文建模和跨层圈水文过程模拟等研究工作。Email:linhong.wei@nju.edu.cn
  • 作者简介:黄思艺,女,硕士研究生,2002年出生,主要从事矿物-微生物共演化研究工作。Email:huangsiyi1203@163.com
  • 基金资助:
    国家自然科学基金项目(42192500)

A Preliminary Study on the Temporal Distribution Characteristics of Iron Minerals and Prediction of the Deep-Time Evolution

HUANG Siyi1(), XU Jingbo1, WEI Linhong2,*(), CAI Yuanfeng1   

  1. 1. School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
    2. School of Frontier Sciences, Nanjing University, Suzhou, Jiangsu 215163, China
  • Published:2025-06-10 Online:2025-07-03

摘要:

矿物是数十亿年地球系统演化的重要信息载体,以数据驱动的矿物学研究对于深入挖掘地球演化过程中的潜在演替规律和驱动机制具有重大意义。铁元素(Fe)在地球物质和能量循环、生命演化、环境修复等方面具有重要作用,也是一种常见的指示环境变迁的氧化还原敏感元素。本文通过探讨949种铁矿物多样性演化规律及分布特征,初步构建起深时铁矿物演化与地球环境演变及生命演化之间的内在联系。研究结果表明,深时铁矿物多样性呈幕式增长特征,增长高峰期与超大陆碰撞期相吻合,板块运动、大气增氧、生命代谢活动等过程共同促进铁矿物向更复杂、更多元的方向演化。我们进一步利用BP神经网络(BPNN)、随机森林(RF)和支持向量机回归(SVR)3种机器学习算法建立铁矿物演化趋势预测模型,其中RF相较于BP神经网络和支持向量机回归预测精度更高、泛化能力更强。

关键词: 铁矿物, 矿物演化, 机器学习, 演化特征

Abstract:

Minerals are important recorders of Earth’s evolution over billions of years. Data-driven research in mineralogy makes it easier to understand the underlying laws and driving mechanisms of the evolutionary processes of Earth. Iron plays a critical role in the matter and energy cycles, evolution of life, and environmental remediation, and is also recognized as a vitally important ‘oxygen fugacity buffer’ during the evolution of Earth surficial system. A total amount of 949 iron minerals are collected in this study. And by exploring their evolutionary patterns and distributional characteristics, a preliminary framework is constructed to tap into the intrinsic links between the evolution of deep-time iron minerals, evolution of Earth’s environment and evolution of life. The results reveal that the diversity of iron minerals has expanded episodically throughout geological history, and the peak of the growth stage coincides with the period of supercontinent collisions. The processes of plate motion, atmospheric oxygenation, and life’s metabolic activities have combined to promote the evolution of iron minerals in a more complex and diverse direction. Furthermore, back propagation neural network (BPNN), random forest (RF) and support vector regression (SVR), are used to establish and predict the evolution model of iron minerals since 4.0 Ga. The results show that RF is more appropriate to predict the evolution trend more accurately with stronger generalization ability than BPNN and SVR.

Key words: iron mineral, mineral evolution, machine learning, evolutionary feature

中图分类号: