欢迎访问现代地质!

现代地质 ›› 2020, Vol. 34 ›› Issue (06): 1166-1180.DOI: 10.19657/j.geoscience.1000-8527.2020.06.080

• 石油地质学 • 上一篇    下一篇

鄂尔多斯盆地杭锦旗地区上古生界地层压力演化研究

王欢1(), 马立元2, 罗清清3, 陈纯芳2, 韩波4, 李超5, 郑晓薇6   

  1. 1.中国地质大学(北京) 地球科学与资源学院,北京 100083
    2.中国石油化工股份有限公司石油勘探开发研究院,北京 100083
    3.北京大学 地球与空间科学学院, 北京 100871
    4.中国石油集团测井有限公司 技术中心,陕西 西安 710077
    5.中国科学院地质与地球物理研究所,北京 100029
  • 收稿日期:2019-07-20 修回日期:2020-03-30 出版日期:2020-12-22 发布日期:2020-12-22
  • 作者简介:王 欢,女,博士研究生,1991年出生,矿产普查与勘探专业,主要从事碳酸盐岩储层评价方面研究。Email:emma_wang@163.com
  • 基金资助:
    国家科技重大专项“中西部重点碎屑岩层系油气富集规律与勘探方向”(2016ZX05002-006);国家自然科学基金项目“深部碳酸盐岩油气储层原位溶蚀模拟实验研究”(41272137)

Pressure Evolution of Upper Paleozoic in Hangjinqi Area, Ordos Basin

WANG Huan1(), MA Liyuan2, LUO Qingqing3, CHEN Chunfang2, HAN Bo4, LI Chao5, ZHENG Xiaowei6   

  1. 1. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
    2. Petroleum Exploration & Production Research Institute, SINOPEC, Beijing 100083, China
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China
    4. Technique Center of China Petroleum Logging CO.LTD, Xi’an,Shaanxi 710077, China
    5. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2019-07-20 Revised:2020-03-30 Online:2020-12-22 Published:2020-12-22

摘要:

为揭示鄂尔多斯盆地杭锦旗地区上古生界地层压力演化特征及异常压力形成机理,基于现今储层压力状态分析,结合泥岩压实研究及包裹体测试古压力恢复结果,采用盆地数值模拟系统,定量分析了杭锦旗地区上古生界异常压力演化史。研究表明,杭锦旗地区储层现今处于异常低压状态,目的层在早白垩世末达到最大埋深,泥岩剩余压力最大值集中在上石盒子组中下部—下石盒子组盒3段,不同区带最大剩余压力大小有所差异,西部区带剩余压力最大(15~20 MPa),东部区带剩余压力居中(10~15 MPa),北部区带剩余压力最小(5~10 MPa)。地层压力演化与构造运动具有同步性,三叠纪末印支运动时期,剩余压力开始形成,中侏罗世早期燕山运动时期,剩余压力略微下降,白垩纪晚燕山运动时期,剩余压力达到最大,随后发生大规模构造抬升剥蚀,剩余压力迅速下降,形成现今储层异常低压和盖层残余不同程度剩余压力的状态。杭锦旗地区现今储层异常低压形成主要原因是天然气扩散,其次为构造抬升引起的温度降低和剥蚀卸载。烃源岩层、盖层及储层古异常高压成因有所差异,烃源岩层以生烃作用为主,盖层以泥岩欠压实作用为主,储层古异常高压形成与砂泥岩配置关系有关,盒3段以泥包砂沉积为主,受泥岩欠压实作用影响较大,下部以砂泥互层或砂包泥为主,泥岩欠压实作用影响减弱甚至消失,以构造挤压作用为主。

关键词: 泥岩欠压实, 剩余压力, 盆地数值模拟, 异常压力演化, 上古生界

Abstract:

Evolution of abnormal pressure was quantitatively determined by basin numerical simulation system, based on the analyses of current reservoir pressure, disequilibrium compaction and inclusion paleo-pressure of the Upper Paleozoic in Hangjinqi area, Ordos Basin. The study shows that current pressure in the reservoir is of under-pressure, whose coefficient decreases gradually from south to north. The target zone is the deepest by the end Early Cretaceous, meanwhile, the maximum over-pressuring of mudstone is concentrated in the lower Upper Shihezi Formation to the third member of lower Shihezi Formation. The maximum over-pressuring in mudstone varies in different zones. The maximum over-pressuring is of 15 to 20 MPa (locally >20 MPa) in west of Hangjinqi, medium over-pressuring occurs in the east between 10 MPa and 15 MPa, while the minimum over-pressuring (5 to 10 MPa) occurs in the north. The numerical simulation results show that the evolution of abnormal pressure is syn-tectonic. Residual pressure (RP) of the Upper Shihezi Formation began to form in the end Triassic under the Indosinian orogenic influence with a maximum of >10 MPa. During the Middle Jurassic, the RP decreased slightly under the influence of the early Yanshanian Movement. During the Cretaceous, the RP was mostly affected by late Yanshanian Movement with >20 MPa. Subsequently, the RP decreased rapidly with the structural uplift and denudation, and abnormally low pressures in the current reservoirs and partly residual pressures in caprocks were formed. The main factors for the formation of under-pressuring in Hangjinqi area are the gas diffusion, temperature drop and tectonic unloading caused by uplifting and denudation. The paleo-pressure genesis varies between different source rocks, caprocks and reservoirs. Generation of organic materials in the source rocks is the main factor for the RP formation, while disequilibrium compaction plays an important role in caprocks. The configuration of sand and mudstone is essential in the paleo-pressure formation in reservoirs. The third member of the Xiashihezi Formation is mainly composed of sandstone surrounded by thick mudstone, which is greatly affected by disequilibrium compaction. The lower part is composed by mudstone-sandstone interbeds or mudstone surrounded by thick sandstone. Effect of the disequilibrium compaction is weakened or even disappeared, and structural extrusion is a dominant control for reservoir paleo-pressure.

Key words: disequilibrium compaction, residual pressure, basin numerical modeling, abnormal pressure evolution, Upper Paleozoic

中图分类号: