现代地质 ›› 2019, Vol. 33 ›› Issue (01): 36-44.DOI: 10.19657/j.geoscience.1000-8527.2019.01.04
收稿日期:
2018-01-10
修回日期:
2018-07-10
出版日期:
2019-02-26
发布日期:
2019-02-28
通讯作者:
倪金龙
作者简介:
倪金龙,男,副教授, 1974年出生,构造地质学专业,主要从事构造地质相关教学与研究工作。Email:nijlqd@163.com。基金资助:
SUN Yujie1,2(), NI Jinlong1,2(
), SHI Xiaoxiao3, GUO Ying4
Received:
2018-01-10
Revised:
2018-07-10
Online:
2019-02-26
Published:
2019-02-28
Contact:
NI Jinlong
摘要:
五莲拆离断层带中石英韧性变形明显,在野外主要表现为条带状、拔丝状,显微镜下主要表现为多晶石英条带,发育亚颗粒旋转重结晶和膨凸重结晶,剪切带经历了中低温条件下的变形,变形温度为300~450 ℃。利用分形方法对石英颗粒边界的研究表明,发生动态重结晶的石英颗粒边界具有统计学意义上的自相似性和明显的分形特征,亚颗粒旋转重结晶石英颗粒分维数介于1.260~1.319之间,均值1.276;膨凸重结晶石英颗粒的分维数为1.217~1.297,均值为1.256;根据石英粒径估算出亚颗粒旋转重结晶和膨凸重结晶作用变形阶段的古差异应力,分别为7.84~21.58 MPa 和18.51~56.65 MPa;基于分维值计算的应变速率计算公式,获得亚颗粒旋转与膨凸重结晶石英颗粒的应变速率分别为10-8.4~10-7.7 s-1、10-10.5~10-9.7 s-1;基于石英流变率计算,亚颗粒旋转重结晶的石英应变速率介于10-12.88~10-11.73 s-1之间,膨凸重结晶的为10-13.72~10-12.46 s-1。本地区韧性变形的应变速率大于一般性韧性剪切带应变速率,可能与拆离断层带的快速拆离伸展作用有关。
中图分类号:
孙煜杰, 倪金龙, 史晓晓, 郭颖. 五莲拆离断层带动态重结晶石英颗粒的分形特征及流变参数估算[J]. 现代地质, 2019, 33(01): 36-44.
SUN Yujie, NI Jinlong, SHI Xiaoxiao, GUO Ying. Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Wulian Detachment Fault Zone[J]. Geoscience, 2019, 33(01): 36-44.
图2 断层带中石英的野外变形特征 (a)花岗质糜棱岩,石英呈拔丝状;(b)花岗质糜棱岩,石英呈条带状环绕在呈眼球状钾长石斑晶周围;(c)花岗质糜棱岩,石英呈脉体在局部张性裂隙中发育;(d)花岗质超糜棱岩,石英呈狭窄的条带平行于叶理面发育
Fig.2 Photos showing the field deformation of the quartz in the Wulian detachment fault zone
图3 长英质糜棱岩韧性变形的显微构造特征 (a)、(d)多晶石英集合体内部石英颗粒的亚颗粒旋转重结晶(SGR)及边部的膨凸重结晶(BLG);(b)单个石英颗粒的旋转定向;(c)多晶石英条带内部石英颗粒的亚颗粒旋转及边部石英颗粒膨凸重结晶,长石颗粒表现为膨凸重结晶与核幔构造
Fig.3 Microphotographs showing the quartz deformation microstructure
结晶类型 | 样品号 | 粒径分布 /μm | 周长分布 /μm | 平均粒径 /μm | 分维数D | 相关系数R | 基于分维值的 应变速率/s-1 |
---|---|---|---|---|---|---|---|
亚颗粒 旋转 重结晶 | JDWC2 | 208.37~336.63 | 656.9~1 246.7 | 267.92 | 1.319 | 0.95 | 10-7.7 |
JDWC4 | 110.56~153.48 | 344.6~523.8 | 127.70 | 1.281 | 0.96 | 10-8.1 | |
JDWC7 | 60.77~93.73 | 219.8~373.2 | 74.38 | 1.260 | 0.96 | 10-8.4 | |
JDW11 | 85.93~135.87 | 285.1~573.1 | 114.75 | 1.274 | 0.98 | 10-8.2 | |
JDW13 | 47.87~93.73 | 147.9~361.4 | 76.80 | 1.258 | 0.99 | 10-8.4 | |
JDW15 | 65.80~106.45 | 214.0~429.4 | 86.64 | 1.253 | 0.96 | 10-8.4 | |
JDW58 | 88.85~157.17 | 318.7~691.4 | 130.92 | 1.303 | 0.97 | 10-7.9 | |
JDW59 | 89.56~118.35 | 292.3~457.0 | 104.35 | 1.275 | 0.87 | 10-8.2 | |
JDW63 | 77.36~98.37 | 324.2~475.1 | 88.86 | 1.260 | 0.83 | 10-8.4 | |
膨凸 重结晶 | JDWC2 | 59.71~125.14 | 161.2~428.9 | 90.29 | 1.297 | 0.96 | 10-9.7 |
JDWC4 | 37.42~73.99 | 109.5~273.7 | 49.92 | 1.274 | 0.95 | 10-9.9 | |
JDWC7 | 22.57~45.14 | 72.8~180.9 | 30.12 | 1.244 | 0.96 | 10-10.2 | |
JDW11 | 25.23~46.52 | 71.0~160.1 | 35.63 | 1.255 | 0.95 | 10-10.1 | |
JDW13 | 15.96~27.64 | 42.8~91.5 | 21.92 | 1.217 | 0.93 | 10-10.5 | |
JDW15 | 19.54~35.68 | 50.8~128.3 | 24.79 | 1.226 | 0.93 | 10-10.4 | |
JDW58 | 37.42~54.12 | 110.5~200.3 | 46.11 | 1.264 | 0.94 | 10-10.0 | |
JDW59 | 46.52~85.19 | 126.0~284.6 | 65.18 | 1.274 | 0.95 | 10-9.9 | |
JDW63 | 29.85~50.46 | 87.1~175.5 | 38.68 | 1.257 | 0.97 | 10-10.1 |
表1 五莲拆离断层带动态重结晶石英颗粒边界的分形特征(样品位置见图1)
Table 1 Boundary fractal features of the dynamic recrystallization quartz in the Wulian detachment fault zone(samples’ location shown in Fig.1)
结晶类型 | 样品号 | 粒径分布 /μm | 周长分布 /μm | 平均粒径 /μm | 分维数D | 相关系数R | 基于分维值的 应变速率/s-1 |
---|---|---|---|---|---|---|---|
亚颗粒 旋转 重结晶 | JDWC2 | 208.37~336.63 | 656.9~1 246.7 | 267.92 | 1.319 | 0.95 | 10-7.7 |
JDWC4 | 110.56~153.48 | 344.6~523.8 | 127.70 | 1.281 | 0.96 | 10-8.1 | |
JDWC7 | 60.77~93.73 | 219.8~373.2 | 74.38 | 1.260 | 0.96 | 10-8.4 | |
JDW11 | 85.93~135.87 | 285.1~573.1 | 114.75 | 1.274 | 0.98 | 10-8.2 | |
JDW13 | 47.87~93.73 | 147.9~361.4 | 76.80 | 1.258 | 0.99 | 10-8.4 | |
JDW15 | 65.80~106.45 | 214.0~429.4 | 86.64 | 1.253 | 0.96 | 10-8.4 | |
JDW58 | 88.85~157.17 | 318.7~691.4 | 130.92 | 1.303 | 0.97 | 10-7.9 | |
JDW59 | 89.56~118.35 | 292.3~457.0 | 104.35 | 1.275 | 0.87 | 10-8.2 | |
JDW63 | 77.36~98.37 | 324.2~475.1 | 88.86 | 1.260 | 0.83 | 10-8.4 | |
膨凸 重结晶 | JDWC2 | 59.71~125.14 | 161.2~428.9 | 90.29 | 1.297 | 0.96 | 10-9.7 |
JDWC4 | 37.42~73.99 | 109.5~273.7 | 49.92 | 1.274 | 0.95 | 10-9.9 | |
JDWC7 | 22.57~45.14 | 72.8~180.9 | 30.12 | 1.244 | 0.96 | 10-10.2 | |
JDW11 | 25.23~46.52 | 71.0~160.1 | 35.63 | 1.255 | 0.95 | 10-10.1 | |
JDW13 | 15.96~27.64 | 42.8~91.5 | 21.92 | 1.217 | 0.93 | 10-10.5 | |
JDW15 | 19.54~35.68 | 50.8~128.3 | 24.79 | 1.226 | 0.93 | 10-10.4 | |
JDW58 | 37.42~54.12 | 110.5~200.3 | 46.11 | 1.264 | 0.94 | 10-10.0 | |
JDW59 | 46.52~85.19 | 126.0~284.6 | 65.18 | 1.274 | 0.95 | 10-9.9 | |
JDW63 | 29.85~50.46 | 87.1~175.5 | 38.68 | 1.257 | 0.97 | 10-10.1 |
图4 五莲拆离断层带部分糜棱岩重结晶石英颗粒粒径-周长双对数图解及粒径-频率分布图 d.重结晶石英颗粒粒径;P.重结晶石英颗粒周长;f.粒径的分布频次
Fig.4 Lg-lg plots of perimeter-diameter of dynamically recrystallized quartz, and the relationship between the particle sizeof recrystallized quartz vs.frequency in Wulian detachment fault zone
b/(μm·MPa-R) | R | 参考文献 |
---|---|---|
1.45×104 | -1.47 | Twiss[ |
4.07×103 | -1.40 | Mercier等[ |
4.9×102 | -0.59 | Koch[ |
3 631 | -1.26 | Stipp等[ |
表2 石英重结晶颗粒粒径压力计参数
Table 2 Parameters of paleopiezo meters based on recrystallized quartz grain sizes
b/(μm·MPa-R) | R | 参考文献 |
---|---|---|
1.45×104 | -1.47 | Twiss[ |
4.07×103 | -1.40 | Mercier等[ |
4.9×102 | -0.59 | Koch[ |
3 631 | -1.26 | Stipp等[ |
结晶 类型 | 样品号 | 平均粒径 /μm | 应力/MPa | |||
---|---|---|---|---|---|---|
Twiss[ | Mercier 等[ | Koch[ | Stipp 等[ | |||
亚颗 粒旋 转重 结晶 | JDWC-2 | 267.92 | 15.09 | 6.90 | 2.77 | 7.84 |
JDWC-4 | 127.70 | 24.98 | 11.68 | 9.70 | 14.08 | |
JDWC-7 | 74.38 | 36.07 | 17.14 | 24.19 | 21.58 | |
JDW11 | 114.75 | 26.86 | 12.60 | 11.63 | 15.32 | |
JDW13 | 76.80 | 35.29 | 16.76 | 22.92 | 21.04 | |
JDW15 | 86.64 | 32.52 | 15.38 | 18.69 | 19.13 | |
JDW58 | 130.92 | 24.56 | 11.47 | 9.30 | 13.80 | |
JDW59 | 104.35 | 28.65 | 13.48 | 13.65 | 16.51 | |
JDW63 | 88.86 | 31.96 | 15.11 | 17.91 | 18.75 | |
膨凸 重结 晶 | JDWC-2 | 90.29 | 31.62 | 14.94 | 17.43 | 18.51 |
JDWC-4 | 49.92 | 47.31 | 22.75 | 47.47 | 29.57 | |
JDWC-7 | 30.12 | 66.69 | 32.57 | 111.46 | 44.07 | |
JDW11 | 35.63 | 59.50 | 28.91 | 83.93 | 38.59 | |
JDW13 | 21.92 | 82.80 | 40.82 | 190.78 | 56.65 | |
JDW15 | 24.79 | 76.13 | 37.40 | 154.87 | 51.39 | |
JDW58 | 46.11 | 49.93 | 24.07 | 54.28 | 31.48 | |
JDW59 | 65.18 | 39.46 | 18.83 | 30.24 | 23.95 | |
JDW63 | 38.68 | 56.27 | 27.27 | 73.05 | 36.17 |
表3 动态重结晶石英颗粒古差异应力值估算
Table 3 Paleo-stress estimation based on different methods
结晶 类型 | 样品号 | 平均粒径 /μm | 应力/MPa | |||
---|---|---|---|---|---|---|
Twiss[ | Mercier 等[ | Koch[ | Stipp 等[ | |||
亚颗 粒旋 转重 结晶 | JDWC-2 | 267.92 | 15.09 | 6.90 | 2.77 | 7.84 |
JDWC-4 | 127.70 | 24.98 | 11.68 | 9.70 | 14.08 | |
JDWC-7 | 74.38 | 36.07 | 17.14 | 24.19 | 21.58 | |
JDW11 | 114.75 | 26.86 | 12.60 | 11.63 | 15.32 | |
JDW13 | 76.80 | 35.29 | 16.76 | 22.92 | 21.04 | |
JDW15 | 86.64 | 32.52 | 15.38 | 18.69 | 19.13 | |
JDW58 | 130.92 | 24.56 | 11.47 | 9.30 | 13.80 | |
JDW59 | 104.35 | 28.65 | 13.48 | 13.65 | 16.51 | |
JDW63 | 88.86 | 31.96 | 15.11 | 17.91 | 18.75 | |
膨凸 重结 晶 | JDWC-2 | 90.29 | 31.62 | 14.94 | 17.43 | 18.51 |
JDWC-4 | 49.92 | 47.31 | 22.75 | 47.47 | 29.57 | |
JDWC-7 | 30.12 | 66.69 | 32.57 | 111.46 | 44.07 | |
JDW11 | 35.63 | 59.50 | 28.91 | 83.93 | 38.59 | |
JDW13 | 21.92 | 82.80 | 40.82 | 190.78 | 56.65 | |
JDW15 | 24.79 | 76.13 | 37.40 | 154.87 | 51.39 | |
JDW58 | 46.11 | 49.93 | 24.07 | 54.28 | 31.48 | |
JDW59 | 65.18 | 39.46 | 18.83 | 30.24 | 23.95 | |
JDW63 | 38.68 | 56.27 | 27.27 | 73.05 | 36.17 |
A/(MPa-1·s-1) | Q/(J·mol-1) | n | 水分 | 参考文献 |
---|---|---|---|---|
1.10×10-7 | 134 000 | 2.7 | 干 | Koch[ |
5.05×10-6 | 145 000 | 2.6 | 湿 | Koch等[ |
1.58×10-5 | 134 000 | 2.6 | 0.40% | Kronenberg等[ |
6.50×10-8 | 135 000 | 2.6 | — | Paterson等[ |
表4 石英岩流变学实验参数
Table 4 Experiment parameters for power law creep constitutive equations for quartzites
A/(MPa-1·s-1) | Q/(J·mol-1) | n | 水分 | 参考文献 |
---|---|---|---|---|
1.10×10-7 | 134 000 | 2.7 | 干 | Koch[ |
5.05×10-6 | 145 000 | 2.6 | 湿 | Koch等[ |
1.58×10-5 | 134 000 | 2.6 | 0.40% | Kronenberg等[ |
6.50×10-8 | 135 000 | 2.6 | — | Paterson等[ |
结晶类型 | 样品号 | Δσ /MPa | 温度/℃ | 石英流变率法/s-1 | 分形法/s-1 | ||||
---|---|---|---|---|---|---|---|---|---|
Koch[ | Koch[ | Kronenberg等[ | Paterson等[ | Takahashi[ | |||||
亚颗粒 旋转 重结晶 | JDWC2 | 7.84 | 400 | 10-16.76 | 10-14.22 | 10-12.88 | 10-15.34 | 10-7.7 | |
JDWC4 | 14.08 | 400 | 10-16.07 | 10-13.56 | 10-12.22 | 10-14.68 | 10-8.1 | ||
JDWC7 | 21.58 | 400 | 10-15.57 | 10-13.08 | 10-11.73 | 10-14.20 | 10-8.4 | ||
JDW11 | 15.32 | 400 | 10-15.98 | 10-13.47 | 10-12.12 | 10-14.59 | 10-8.2 | ||
JDW13 | 21.04 | 400 | 10-15.60 | 10-13.11 | 10-11.76 | 10-14.23 | 10-8.4 | ||
JDW15 | 19.13 | 400 | 10-15.71 | 10-13.22 | 10-11.87 | 10-14.34 | 10-8.4 | ||
JDW58 | 13.80 | 400 | 10-16.10 | 10-13.59 | 10-12.24 | 10-14.70 | 10-7.9 | ||
JDW59 | 16.51 | 400 | 10-15.89 | 10-13.38 | 10-12.04 | 10-14.50 | 10-8.2 | ||
JDW63 | 18.75 | 400 | 10-15.74 | 10-13.24 | 10-11.89 | 10-14.36 | 10-8.4 | ||
膨凸 重结晶 | JDWC2 | 18.51 | 300 | 10-15.79 | 10-15.22 | 10-13.72 | 10-16.20 | 10-9.7 | |
JDWC4 | 29.57 | 300 | 10-15.24 | 10-14.69 | 10-13.19 | 10-15.67 | 10-9.9 | ||
JDWC7 | 44.07 | 300 | 10-14.77 | 10-14.24 | 10-12.74 | 10-15.22 | 10-10.2 | ||
JDW11 | 38.59 | 300 | 10-14.93 | 10-14.39 | 10-12.89 | 10-15.37 | 10-10.1 | ||
JDW13 | 56.65 | 300 | 10-14.48 | 10-13.96 | 10-12.46 | 10-14.94 | 10-10.5 | ||
JDW15 | 51.39 | 300 | 10-14.59 | 10-14.07 | 10-12.57 | 10-15.05 | 10-10.4 | ||
JDW58 | 31.48 | 300 | 10-15.17 | 10-14.62 | 10-13.12 | 10-15.60 | 10-10.0 | ||
JDW59 | 23.95 | 300 | 10-15.49 | 10-14.93 | 10-13.43 | 10-15.91 | 10-9.9 | ||
JDW63 | 36.17 | 300 | 10-15.01 | 10-14.47 | 10-12.97 | 10-15.44 | 10-10.1 |
表5 基于石英流变率公式估算的应变速率
Table 5 Strain rate estimated by different methods
结晶类型 | 样品号 | Δσ /MPa | 温度/℃ | 石英流变率法/s-1 | 分形法/s-1 | ||||
---|---|---|---|---|---|---|---|---|---|
Koch[ | Koch[ | Kronenberg等[ | Paterson等[ | Takahashi[ | |||||
亚颗粒 旋转 重结晶 | JDWC2 | 7.84 | 400 | 10-16.76 | 10-14.22 | 10-12.88 | 10-15.34 | 10-7.7 | |
JDWC4 | 14.08 | 400 | 10-16.07 | 10-13.56 | 10-12.22 | 10-14.68 | 10-8.1 | ||
JDWC7 | 21.58 | 400 | 10-15.57 | 10-13.08 | 10-11.73 | 10-14.20 | 10-8.4 | ||
JDW11 | 15.32 | 400 | 10-15.98 | 10-13.47 | 10-12.12 | 10-14.59 | 10-8.2 | ||
JDW13 | 21.04 | 400 | 10-15.60 | 10-13.11 | 10-11.76 | 10-14.23 | 10-8.4 | ||
JDW15 | 19.13 | 400 | 10-15.71 | 10-13.22 | 10-11.87 | 10-14.34 | 10-8.4 | ||
JDW58 | 13.80 | 400 | 10-16.10 | 10-13.59 | 10-12.24 | 10-14.70 | 10-7.9 | ||
JDW59 | 16.51 | 400 | 10-15.89 | 10-13.38 | 10-12.04 | 10-14.50 | 10-8.2 | ||
JDW63 | 18.75 | 400 | 10-15.74 | 10-13.24 | 10-11.89 | 10-14.36 | 10-8.4 | ||
膨凸 重结晶 | JDWC2 | 18.51 | 300 | 10-15.79 | 10-15.22 | 10-13.72 | 10-16.20 | 10-9.7 | |
JDWC4 | 29.57 | 300 | 10-15.24 | 10-14.69 | 10-13.19 | 10-15.67 | 10-9.9 | ||
JDWC7 | 44.07 | 300 | 10-14.77 | 10-14.24 | 10-12.74 | 10-15.22 | 10-10.2 | ||
JDW11 | 38.59 | 300 | 10-14.93 | 10-14.39 | 10-12.89 | 10-15.37 | 10-10.1 | ||
JDW13 | 56.65 | 300 | 10-14.48 | 10-13.96 | 10-12.46 | 10-14.94 | 10-10.5 | ||
JDW15 | 51.39 | 300 | 10-14.59 | 10-14.07 | 10-12.57 | 10-15.05 | 10-10.4 | ||
JDW58 | 31.48 | 300 | 10-15.17 | 10-14.62 | 10-13.12 | 10-15.60 | 10-10.0 | ||
JDW59 | 23.95 | 300 | 10-15.49 | 10-14.93 | 10-13.43 | 10-15.91 | 10-9.9 | ||
JDW63 | 36.17 | 300 | 10-15.01 | 10-14.47 | 10-12.97 | 10-15.44 | 10-10.1 |
[1] | 张祥信, 彭宇, 雷世和, 等. 内蒙古中部苏尼特左旗地区勃勒金韧性剪切带的厘定及其地质意义[J]. 现代地质, 2017,31(3):433-442. |
[2] | 汤世凯, 马筱, 杨坤光, 等. 黔东桂北加里东期两类构造变形特征与成因机制探讨[J]. 现代地质, 2014,28(1):109-118. |
[3] | 王新社, 郑亚东, 杨崇辉, 等. 用动态重结晶石英颗粒的分形确定变形温度及应变速率[J]. 岩石矿物学杂志, 2001,20(1):36-41. |
[4] | 胡玲. 显微构造地质学概论 [M]. 北京: 地质出版社, 1998: 1-160. |
[5] | POIRIER J P. Creep of high-pressure ice VI[J]. Ices in the Solar System, 1985,156:109-118. |
[6] | HACKER B R, YIN A, CHRISTIE J M, et al. Differential stress, strain rate, and temperatures of mylonitization in the Ruby mountains, nevada-implications for the rate and duration of uplift[J]. Journal of Geophysical Research:Solid Earth and Planets, 1990,95(6):8569-8580. |
[7] | KRUHL J H, NEGA M. The fractal shape of sutured quartz grain boundaries: application as a geothermometer[J]. International Journal of Earth Sciences, 1996,85(1):38-43. |
[8] | TAKAHASHI M, NAGAHAMA H, MASUDA T, et al. Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter[J]. Journal of Structural Geology, 1998,20(2):269-275. |
[9] | MAMTANI M A. Strain-rate estimation using fractal analysis of quartz grains in naturally deformed rocks[J]. Journal of the Geological Society of India, 2010,75(1):202-209. |
[10] | 郑蕾, 周永章, 曾长育. 钦杭结合带(南段)庞西垌断裂中动态重结晶石英颗粒分形特征及主要流变参数估算[J]. 中山大学学报(自然科学版), 2013,52(2):106-114. |
[11] | 李振生, 田晓莉, 张文俊, 等. 安徽桐城挂车河镇地区东西向韧性剪切带分形特征及其估算应变速率适用性分析[J]. 科技导报, 2013,31(20):15-19. |
[12] | 梁琛岳, 刘永江, 孟婧瑶, 等. 舒兰韧性剪切带应变分析及石英动态重结晶颗粒分形特征与流变参数估算[J]. 地球科学, 2015,40(1):115-129. |
[13] | HACKER B R, WALLIS S R, MCWILLIAMS M O, et al. 40Ar/39Ar constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen[J]. Journal of Metamorphic Geology, 2009,27(9):827-844. |
[14] | AMES L. Timing of collision of the Sino-Korean and Yangtze craton: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993,21(4):339-342. |
[15] | LI S G, HART S R, ZHENG S G, et al. Timing of collision between the North and South China Blocks—Sm-Nd isotopic age evidence[J]. Science in China:Series B, 1989,32(11):1393-1400. |
[16] | XU Y G, LI H Y, PANG C J, et al. On the timing and duration of the destruction of the North China Craton[J]. Chinese Science Bulletin, 2009,54(19):3379-3396. |
[17] | SUO S T, ZHONG Z Q, ZHOU H W, et al. Multi-stage tectonic exhumation processes of ultrahigh-pressure (UHP) metamorphic Rocks in the Dabie-Sulu Area, East-Central China[J]. Earth Science: Journal of China University of Geosciences, 2012,37(1):1-17. |
[18] | NI J L, LIU J L, TANG X L, et al. The Wulian metamorphic core complex: A newly discovered metamorphic core complex along the Sulu orogenic belt, eastern China[J]. Journal of Earth Science, 2013,24(3):297-313. |
[19] | 丰成君, 张鹏, 戚帮申, 等. 郯庐断裂带附近地壳浅层现今构造应力场[J]. 现代地质, 2017,31(1):46-70. |
[20] | 葛君, 张泽坤, 倪金龙, 等. 牟平—即墨断裂带南端断裂构造特征及动力学成因[J]. 现代地质, 2015,29(4):747-754. |
[21] | 周术召, 余心起, 陈子微, 等. 江南造山带东段皖南地区印支事件地质表象[J]. 现代地质, 2015,29(4):738-746. |
[22] | TROUW R A, PASSCHIER C W. Microtectonics[J]. Journal of Structural Geology, 1996,19(7):1-5. |
[23] | STIPP M, STUNITZ H, HILBRONNER R, et al. The eastern Tonale fault zone: a natural laboratory for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002,24(12):1861-1884. |
[24] | MANCKTELOW N, PENNACCHIONI G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004,26(1):47-69. |
[25] | LISTER G S, DAVIS G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA[J]. Journal of Structural Geology, 1989,11(1/2):65-94. |
[26] | TURCOTTE D L. Implications of chaos, scale-invariance, and fractal statistics in geology[J]. Global and Planetary Change, 1990,3(3):301-308. |
[27] | 高安秀树. 分数维[M]. 沈步明, 常子文,译. 北京: 地震出版社, 1989: 1-190. |
[28] | KENNETH Falconer. 分形几何——数学基础及其应用 [M]. 曾文曲, 译. 沈阳: 东北工学院出版社, 1991: 1-393. |
[29] | LOVEJOY S. Area-perimeter relation for rain and cloud areas[J]. Science, 1982,216:185-187. |
[30] | STIPP M, TULLIS J. The recrystallized grain size piezometer for quartz[J]. Geophysical Research Letters, 2003,30(21):2088. |
[31] | TWISS R J. Theory and applicability of a recrystallized grain size paleopiezometer[J]. Pure and Applied Geophysics, 1977,115(1/2):227-244. |
[32] | TWISS R J. Static theory of size variation with stress for subgrains and dynamically recrystallized grains[J]. Menlo Park, 1980,80:665-683. |
[33] | MERCIER J C, ANDERSON D A, CARTER N L. Stress in the lithosphere: Inferences from steady state flow of rocks[J]. Pure and Applied Geophysics, 1977,115(1/2):199-226. |
[34] | KOCH P S. Rheology and microstructures of experimentally deformed quartz aggregates [R]. Los Angeles:University of California, 1983. |
[35] | KOCH P S, CHRISTIE J M, ORD A, et al. Effect of water on the rheology of experimentally deformed quartzite[J]. Journal of Geophysical Research Atmospheres, 1989,941(10):13975-13996. |
[36] | KRONENBERG A K, TULLIS J. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening[J]. Journal of Geophysical Research: Solid Earth and Planets, 1984,89(6):4281-4297. |
[37] | PATERSON M S, LUAN F C. Quartzite rheology under geological conditions[J]. Geological Society of London, Special Publications, 1990,54(1):299-307. |
[38] | 张波, 张进江, 郭磊. 北喜马拉雅穹隆带然巴韧性剪切带石英动态重结晶颗粒的分维几何分析与主要流变参数的估算[J]. 地质科学, 2006,41(1):158-169. |
[1] | 赵忠海, 陈俊, 乔锴, 崔晓梦, 梁杉杉, 李成禄. 基于分形理论的遥感蚀变信息和构造分析研究:以黑龙江多宝山地区为例[J]. 现代地质, 2023, 37(01): 153-163. |
[2] | 姜秉仁, 邓恩德, 韩明辉, 马子杰. 黔西北地区石炭系祥摆组页岩微观孔隙结构及分形特征[J]. 现代地质, 2022, 36(04): 1065-1073. |
[3] | 王斌, 任涛, 宋伊圩, 杨可, 王占彬, 孙亚柯. 西秦岭常家山地区水系沉积物地球化学特征及其地质意义[J]. 现代地质, 2022, 36(03): 911-922. |
[4] | 杨毅, 张恒荣, 袁伟, 杨冬, 胡德胜. 常规砂岩与砂砾岩分形特征对比及成因分析:以乌石凹陷X构造流沙港组为例[J]. 现代地质, 2022, 36(01): 149-158. |
[5] | 黄宇琪, 张鹏, 张金川, 杨军伟. 湖北来凤LD-1井龙马溪组页岩孔隙结构特征分析[J]. 现代地质, 2020, 34(04): 828-836. |
[6] | 谢淑云, 雷蕾, 焦存礼, 何治亮, 鲍征宇, 马佳怡, 张殿伟, 彭守涛. 鲕粒白云岩内部溶蚀及孔隙非均质性演化研究[J]. 现代地质, 2019, 33(06): 1174-1187. |
[7] | 陈震, 张耘实, 陈建平, 安志宏. 基于分形特征的高标准农田遥感分类方法研究[J]. 现代地质, 2018, 32(03): 595-601. |
[8] | 李振, 邵龙义, 侯海海, 郭双庆, 赵升, 姚铭檑, 阎纯忠. 高煤阶煤孔隙结构及分形特征[J]. 现代地质, 2017, 31(03): 595-605. |
[9] | 唐相路,姜振学,李卓,李卫兵,杨佩佩,黄何鑫,郝进. 渝东南地区龙马溪组高演化页岩微纳米孔隙非均质性及主控因素[J]. 现代地质, 2016, 30(1): 163-171. |
[10] | 李超, 刘少峰,白玉. 松辽盆地南部白垩纪裂后期异常沉降分离[J]. 现代地质, 2014, 28(6): 1213-1224. |
[11] | 邝著华,张浩然,刘文灿. 内蒙古白音郭勒地区地球化学异常提取方法对比研究[J]. 现代地质, 2014, 28(5): 942-952. |
[12] | 彭令,徐素宁,彭军还. 三峡库区滑坡规模与发育特征研究[J]. 现代地质, 2014, 28(5): 1077-1086. |
[13] | 邱海军,曹明明,刘闻,郝俊卿,胡胜,高宇,刘琪. 区域滑坡空间分布的变维分形特征研究[J]. 现代地质, 2014, 28(2): 443-448. |
[14] | 陈剑,陈松,慎乃齐,刘丽娜,崔之久. 泥石流堆积物的粒度特征及分形结构:以金沙江上游干热河谷区瓦卡泥石流沟为例[J]. 现代地质, 2014, 28(2): 438-442. |
[15] | 陈聆,郭科,柳柄利. 基于盲源分离理论的地球化学矿致异常识别研究[J]. 现代地质, 2013, 27(3): 629-636. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||