[1] |
CUMINGS E R. Reefs or bioherms?[J]. Bulletin of the Geolo-gical Society of America, 1932, 43: 331-352.
|
[2] |
RIDING R. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231.
DOI
URL
|
[3] |
梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5): 222-234.
|
[4] |
梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评, 2012, 58(5): 937-951.
|
[5] |
梅冥相, 刘丽, 胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报, 2015, 89(2): 440-460.
|
[6] |
张文浩, 史晓颖, 汤冬杰, 等. 华北地台西缘早—中寒武世之交的核形石:微组构与生物矿化机制研究[J]. 现代地质, 2014, 28(1): 1-15.
|
[7] |
RIDING R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
DOI
URL
|
[8] |
LEE J H, LEE H S, CHEN J, et al. Calcified microbial reefs in Cambrian Series 2, North China Platform: Implications for the evolution of Cambrian calcified microbes[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 403: 30-42.
DOI
URL
|
[9] |
ADACHI N, EZAKI Y, LIU J. Early Ordovician shift in reef construction from microbial to metazoan reefs[J]. Palaios, 2011, 26(1): 106-114.
DOI
URL
|
[10] |
马永生, 梅冥相, 周润轩, 等. 层序地层框架下的鲕粒滩形成样式:以北京西郊下苇甸剖面寒武系第三统为例[J]. 岩石学报, 2017, 33(4): 1021-1036.
|
[11] |
CHEN J, LEE J H, WOO J. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414: 246-259.
DOI
URL
|
[12] |
LEE J, CHEN J, CHOUGH S K. The Middle-Late Cambrian reef transition and related geological events: A review and new view[J]. Earth-Science Reviews, 2015, 145: 66-84.
DOI
URL
|
[13] |
赵文光, 郭彤楼, 蔡忠贤, 等. 川东北地区二叠系长兴组生物礁类型及控制因素[J]. 现代地质, 2010, 24(5): 951-956.
|
[14] |
梅冥相, 郭荣涛, 胡媛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 2011, 27(8): 2473-2486.
|
[15] |
SCHLAGER W. Type 3 sequence boundaries[J]. SEPM(Society for Sedimentary Geology)Special Publications, 1999, 63: 35-45.
|
[16] |
梅冥相. 淹没不整合型碳酸盐三级旋回层序——兼论碳酸盐台地的“凝缩作用”[J]. 岩相古地理, 1996, 16(6): 24-33.
|
[17] |
梅冥相, 杨欣德. 强迫型海退及强迫型海退楔体系域——对传统Exxon层序地层学模式的修正[J]. 地质科技情报, 2000, 19(2): 17-21.
|
[18] |
梅冥相. 从正常海退与强迫型海退的辨别进行层序界面对比:层序地层学进展之一[J]. 古地理学报, 2010, 12(5): 549-564.
|
[19] |
杨仁超, 樊爱萍, 韩作振, 等. 山东寒武系毛庄阶微生物团块的形态特征与成因[J]. 中国科学(地球科学), 2013, 43(3): 423-432.
|
[20] |
彭善池. 全球寒武系四统划分框架正式确立[J]. 地层学杂志, 2006, 30(2): 147-148.
|
[21] |
梅冥相, 张瑞, 李屹尧, 等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报, 2017, 33(4): 1073-1093.
|
[22] |
常玉光, 孙凤余, 郑伟. 豫西寒武纪叠层石微生物化石及其钙化特征[J]. 现代地质, 2014, 28(2):271-280.
|
[23] |
PENG S, BABCOCK L E, COOPER R A. The Cambrian Period[M]. Amsterdam: Elsevier, 2012: 437-488.
|
[24] |
MENG X, GE M, TUCKER M E. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform[J]. Sedimentary Geology, 1997, 114(1): 189-222.
DOI
URL
|
[25] |
梅冥相, 孟庆芬. 现代叠层石的多样化构成:认识古代叠层石形成的关键和窗口[J]. 古地理学报, 2016, 18(2): 127-146.
|
[26] |
DELFINO D W M. Sedimentology and temporal distribution of microbial mats from Brejodo Espinho, Rio de Janeiro, Brazil[J]. Sedimentary Geology, 2012, 263/264: 85-95.
DOI
URL
|
[27] |
ALLEN MA G F. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay[J]. Geobiology, 2009, 7(1): 82-96.
DOI
PMID
|
[28] |
GERDES G, DUNAJTSCHIK-PIEWAK K, RIEGE H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6): 1273-1294.
DOI
URL
|
[29] |
FLÜGEL E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. Berlin: Springer-Verlag, 2004: 271-295.
|
[30] |
梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报, 2014, 16(3): 285-304.
|
[31] |
赵新伟, 曾伟. 河北承德路通沟剖面寒武系层序地层划分[J]. 中国地质, 2016, 43(3): 921-935.
|
[32] |
WOODS A D. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments[J]. Global and Planetary Change, 2013, 105: 91-101.
DOI
URL
|
[33] |
BAUMGARTNER L K, REID R P, DUPRAZ C, et al. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries[J]. Sedimentary Geology, 2006, 185(3/4): 131-145.
DOI
URL
|
[34] |
RIDING R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238.
DOI
URL
|
[35] |
CHERCHI A, SCHROEDER R. Remarks on the systematic position of Lithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm[J]. Facies, 2006, 52(3): 435-440.
DOI
URL
|
[36] |
LEE J H, CHEN J, CHOH S J, et al. Furongian (late Cambrian) sponge-microbial maze-like reefs in the north China platform[J]. Palaios, 2014, 29: 27-37.
DOI
URL
|
[37] |
DUPRAZ C, REID R P, BRAISSANT O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
DOI
URL
|
[38] |
LEE J H, HONG J, WOO J, et al. Reefs in the early Paleozoic Taebaek group, Korea: a review[J]. Acta Geologica Sinica, 2016, 90: 352-367.
DOI
URL
|