Geoscience ›› 2025, Vol. 39 ›› Issue (04): 1143-1155.DOI: 10.19657/j.geoscience.1000-8527.2024.130
• Energy Geology and Engineering • Previous Articles Next Articles
YAN Xinlu1,2,3(), TANG Shuheng4,*(
), FU Xiaokang2,3, DONG Xianshu1, LI Zhongcheng2,3, DENG Zhiyu2,3, MENG Yanjun1,3
Online:
2025-08-10
Published:
2025-08-27
Contact:
TANG Shuheng
CLC Number:
YAN Xinlu, TANG Shuheng, FU Xiaokang, DONG Xianshu, LI Zhongcheng, DENG Zhiyu, MENG Yanjun. Numerical Simulation of the Influence of Aquifer Leakage Recharge on CBM Productivity:A Case Study from Shizhuan South Block[J]. Geoscience, 2025, 39(04): 1143-1155.
模拟数值参数 | 数值 | 模拟数值参数 | 数值 |
---|---|---|---|
埋深(m) | 714.7 | 兰氏体积(m3∙t-1) | 24 |
煤厚(m) | 5.8 | 兰氏压力(MPa) | 2.8 |
储层压力(MPa) | 3.9 | 含气量(m3∙t-1) | 10 |
临界解吸压力(MPa) | 2.0 | 人工压裂缝范围(m2) | 110 |
渗透率(mD) | 0.8 | 压裂缝渗透率(mD) | 20 |
裂缝孔隙度(%) | 4.0 | 煤岩密度(g∙cm-3) | 1.3 |
Table 1 Numerical simulation parameters of coal reservoir
模拟数值参数 | 数值 | 模拟数值参数 | 数值 |
---|---|---|---|
埋深(m) | 714.7 | 兰氏体积(m3∙t-1) | 24 |
煤厚(m) | 5.8 | 兰氏压力(MPa) | 2.8 |
储层压力(MPa) | 3.9 | 含气量(m3∙t-1) | 10 |
临界解吸压力(MPa) | 2.0 | 人工压裂缝范围(m2) | 110 |
渗透率(mD) | 0.8 | 压裂缝渗透率(mD) | 20 |
裂缝孔隙度(%) | 4.0 | 煤岩密度(g∙cm-3) | 1.3 |
越流补给 性质 | 影响参数 | 参数取值 | |
---|---|---|---|
含水层 物性 | 渗透率(mD) | 无限补给含水层 50/100/200 | 有限补给含水层 10/20/40 |
孔隙度(%) | 10/20/30 | ||
厚度(m) | 5/10/15 | ||
大小(m | 200 | ||
综合压缩系数 ( | 1/2/3 | ||
地层水 性质 | 黏度(mPas) | 0.5/1/1.5 | |
越流通 道性质 | 越流距离(m) | 0/100/200 | |
越流方向 (m | 法向5 20 |
Table 2 Numerical simulation parameters of aquifer
越流补给 性质 | 影响参数 | 参数取值 | |
---|---|---|---|
含水层 物性 | 渗透率(mD) | 无限补给含水层 50/100/200 | 有限补给含水层 10/20/40 |
孔隙度(%) | 10/20/30 | ||
厚度(m) | 5/10/15 | ||
大小(m | 200 | ||
综合压缩系数 ( | 1/2/3 | ||
地层水 性质 | 黏度(mPas) | 0.5/1/1.5 | |
越流通 道性质 | 越流距离(m) | 0/100/200 | |
越流方向 (m | 法向5 20 |
产能敏感性 | 时间(d) | 大小 | 厚度 | 孔隙度 | 综合压缩系数 | 渗透率 | 黏度 | 越流距离 | 越流方向 |
---|---|---|---|---|---|---|---|---|---|
无限补给含水层 | 1000 | 7.6 | 7.6 | 0 | 0 | 10.2 | 8.9 | 190.5 | 70.0 |
3000 | 15.3 | 15.3 | 0 | 0 | 18.2 | 13.1 | 185.4 | 109.1 | |
5000 | 11.7 | 11.7 | 0 | 0 | 14.0 | 9.3 | 227.7 | 130.0 | |
有限补给含水层 | 1000 | 25.7 | 36.4 | 31.2 | 31.2 | 14.4 | 9.6 | 83.1 | 31.3 |
3000 | 39.2 | 41.0 | 46.5 | 46.5 | 0.9 | 1.4 | 72.6 | 9.8 | |
5000 | 34.4 | 30.9 | 33.3 | 33.3 | 6.0 | 5.4 | 48.4 | 32.6 |
Table 3 Gas production sensitivity of aquifer leakage recharge (%)
产能敏感性 | 时间(d) | 大小 | 厚度 | 孔隙度 | 综合压缩系数 | 渗透率 | 黏度 | 越流距离 | 越流方向 |
---|---|---|---|---|---|---|---|---|---|
无限补给含水层 | 1000 | 7.6 | 7.6 | 0 | 0 | 10.2 | 8.9 | 190.5 | 70.0 |
3000 | 15.3 | 15.3 | 0 | 0 | 18.2 | 13.1 | 185.4 | 109.1 | |
5000 | 11.7 | 11.7 | 0 | 0 | 14.0 | 9.3 | 227.7 | 130.0 | |
有限补给含水层 | 1000 | 25.7 | 36.4 | 31.2 | 31.2 | 14.4 | 9.6 | 83.1 | 31.3 |
3000 | 39.2 | 41.0 | 46.5 | 46.5 | 0.9 | 1.4 | 72.6 | 9.8 | |
5000 | 34.4 | 30.9 | 33.3 | 33.3 | 6.0 | 5.4 | 48.4 | 32.6 |
[1] | 张松航, 唐书恒, 孟尚志, 等. 煤储层含水性及其对煤层气产出的控制机理[J]. 煤炭学报, 2023, 48(增):171-184. |
[2] | 秦勇. 中国煤层气地质研究进展与述评[J]. 高校地质学报, 2003, 9(3):339-358. |
[3] | 刘世奇. 沁水盆地南部煤层气直井产能的地质与工程协同控制及预测[D]. 徐州: 中国矿业大学, 2013. |
[4] | 康永尚, 陈晶, 张兵, 等. 沁水盆地寿阳勘探区煤层气井排采水源层判识[J]. 煤炭学报, 2016, 41(9):2263-2272. |
[5] | 陈跃, 汤达祯, 田霖, 等. 三交区块水文地质条件对煤层气富集高产控制作用[J]. 煤炭科学技术, 2017, 45(2):162-167. |
[6] | 王凯峰, 唐书恒, 张松航, 等. 柿庄南区块煤层气高产潜力井低产因素分析[J]. 煤炭科学技术, 2018, 46(6):85-91. |
[7] | 倪小明, 赵政, 刘度, 等. 柿庄南区块煤层气低产井原因分析及增产技术对策研究[J]. 煤炭科学技术, 2020, 48(2):176-184. |
[8] | 杜丰丰, 倪小明, 张亚飞, 等. 寿阳区块煤层气田的水文控藏模式及控产特征[J]. 煤炭科学技术, 2023, 51(10):177-188. |
[9] | 杜丰丰, 倪小明, 张亚飞, 等. 补给水类型对煤层气井产水量的控制作用及开发对策[J]. 煤田地质与勘探, 2023, 51(6):74-84. |
[10] | YAN X L, TANG S H, ZHANG S H, et al. Analysis of productivity differences in vertical coalbed methane wells in the Shizhuangnan Block, Southern Qinshui Basin, and their influencing factors[J]. Energy Exploration & Exploitation, 2020, 38(5):1428-1453. |
[11] | NI G H, CHENG W M, LIN B Q, et al. Experimental study on removing water blocking effect (WBE) from two aspects of the pore negative pressure and surfactants[J]. Journal of Natural Gas Science and Engineering, 2016,31:596-602. |
[12] | SHEN J, ZHAO J C, QIN Y, et al. Water imbibition and drainage of high rank coals in Qinshui Basin, China[J]. Fuel, 2018,211:48-59. |
[13] | SU X B, WANG Q, SONG J X, et al. Experimental study of water blocking damage on coal[J]. Journal of Petroleum Science and Engineering, 2017,156:654-661. |
[14] |
李相方, 冯东, 张涛, 等. 毛细管力在非常规油气藏开发中的作用及应用[J]. 石油学报, 2020, 41(12):1719-1733.
DOI |
[15] | 王金, 康永尚, 姜杉钰, 等. 沁水盆地寿阳区块和柿庄区块煤层气开发条件对比[J]. 煤田地质与勘探, 2017, 45(4):56-62. |
[16] | 吕玉民, 柳迎红, 王存武, 等. 沁水盆地寿阳区块煤层气井高产水影响因素[J]. 现代地质, 2017, 31(5):1088-1094. |
[17] | 闫涛滔, 邓志宇, 吴鹏, 等. 鄂尔多斯盆地东缘临兴东区杨家坡区块煤层气井产能特征及主控因素[J]. 现代地质, 2024, 38(6):1545-1556. |
[18] | ZHANG S H, TANG S H, LI Z C, et al. Study of hydrochemical characteristics of CBM co-produced water of the Shizhuangnan Block in the southern Qinshui Basin, China, on its implication of CBM development[J]. International Journal of Coal Geology, 2016,159:169-182. |
[19] | ZHANG Z, YAN D T, ZHUANG X G, et al. Hydrogeochemistry signatures of produced waters associated with coalbed methane production in the Southern Junggar Basin, NW China[J]. Environmental Science and Pollution Research, 2019, 26(31):31956-31980. |
[20] | ZHANG Y, LI S, TANG D Z, et al. Geological and engineering controls on the differential productivity of CBM wells in the Linfen block, southeastern Ordos Basin, China: Insights from geochemical analysis[J]. Journal of Petroleum Science and Engineering, 2022,211:110159. |
[21] | 翟佳宇, 张松航, 唐书恒, 等. 云南老厂雨汪煤层气区块气水成因及产能响应[J]. 现代地质, 2022, 36(5):1341-1350. |
[22] | YANG G Q, TANG S H, HU W H, et al. Analysis of abnormally high water production in coalbed methane vertical wells: A case study of the Shizhuangnan block in the southern Qinshui Basin, China[J]. Journal of Petroleum Science and Engineering, 2020,190:107100. |
[23] | 刘明, 杨瑞青, 杨风丽, 等. 渝东南角川地区五峰组—龙马溪组页岩气层地应力数值模拟及有利区预测[J]. 石油实验地质, 2023, 45(6):1178-1188. |
[24] |
朱学申, 梁建设, 柳迎红, 等. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5):755-760.
DOI |
[25] | 闫欣璐, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气低效井二次改造研究[J]. 煤炭科学技术, 2018, 46(6):119-125. |
[26] | YAN X L, ZHANG S H, TANG S H, et al. A prediction model for pressure propagation and production boundary during coalbed methane development[J]. Energy & Fuels, 2021, 35(2):1219-1233. |
[27] | LI Y, TANG S H, ZHANG S H. In situ analysis of methanogenic pathways and biogeochemical features of cbm co-produced water from the Shizhuangnan Block in the southern Qinshui Basin, China[J]. Energy & Fuels, 2020, 34(5):5466-5475. |
[28] | 王凯峰, 唐书恒, 张松航, 等. 构造条件和水力压裂控制下的煤层气井异常高产水成因探讨[J]. 煤炭学报, 2021, 46(增2):849-861. |
[29] | 刘国东, 杜成鸿, 侯杰, 等. 基于高斯分布生成管道的岩溶地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2024, 54(2):592-603. |
[30] | 郭莹莹, 倪小明, 张海锋, 等. 基于构造递阶优选的煤层气开发甜点区预测:以沁水盆地为例[J/OL]. 现代地质, 2025:1-12. https://doi.org/10.19657/j.geoscience.1000-8527.2024.138. |
[31] | 包庆林, 邓恩德, 马子杰, 等. 黔西煤储层孔隙结构特征与储气性研究:以戴家田煤矿D1井为例[J]. 现代地质, 2024, 38(6):1532-1544. |
[32] | 刘冰, 张松航, 唐书恒, 等. 无越流补给含水层对煤层气排采影响的数值模拟[J]. 煤田地质与勘探, 2021, 49(2):43-53. |
[33] | YUE P, QU S M, ZHANG Y F, et al. Numerical simulation study of the upper aquifer impact on the coalbed methane production[J]. Frontiers in Energy Research, 2022,9:789021. |
[34] | HURST W. The simplification of the material balance formulas by the laplace transformation[J]. Transactions of the AIME, 1958, 213(1):292-303. |
[35] | FETKOVICH M J. A simplified approach to water influx calculations finite aquifer systems[J]. Journal of Petroleum Technology, 1971, 23(7):814-828. |
[1] | QIN Hongliang, ZHAO Cui, ZHU Yuhua, HU Rong, WU Bo, HUANG Xinxin, HUANG Guangcai. Research on Key Issues of Stability of Typical Dangerous Rock Masses in the Changxing Formation, Guizhou Province [J]. Geoscience, 2025, 39(04): 908-919. |
[2] | BAO Qinglin, DENG Ende, MA Zijie, JIANG Bingren. Research on the Pore Structure Characteristics and Gas Storage Properties of Coal Reservoirs in Western Guizhou: A Case Study of Well D1 in Daijiatian Coal Mine [J]. Geoscience, 2024, 38(06): 1532-1544. |
[3] | YAN Taotao, DENG Zhiyu, WU Peng, GAO Guosen, CHANG Suoliang, FU Xinyu, MENG Yanjun, LIU Yanfei. Characteristics and Key Control Factors of Coalbed Methane Well Productivity in the Yangjiapo Block, Eastern Linxing District, Ordos Basin [J]. Geoscience, 2024, 38(06): 1545-1556. |
[4] | QIU Zhendong, GUO Changbao, WU Rui’an, JIAN Wenxing, NI Jiawei, ZHANG Ya’nan, YAN Yiqiu. Development Characteristics and Stability Evaluation of the Shadingmai Large-scale Ancient Landslide in the Upper Reaches of Jinsha River, Tibetan Plateau [J]. Geoscience, 2024, 38(02): 451-463. |
[5] | PENG Hongming, WANG Zhanwei, LUO Yinfei, YUAN Youjin, WANG Wanping. Evaluation of Exploitable Groundwater Resources in the Buha River Basin Based on Groundwater Numerical Simulation [J]. Geoscience, 2023, 37(04): 943-953. |
[6] | NIE Qiong, NIE Zhibao, CHEN Jian, DING Shijun, WU Saier, LI Duo, GE Runze, CHEN Ruichen. Development Characteristics and Risk Assessment of the Damogou Debris Flow in Mentougou District, Beijing [J]. Geoscience, 2023, 37(04): 1013-1022. |
[7] | LIU Chen, LI Jianghai, WANG Zhichen. Dynamic Model Analysis of Formation and Evolution of the South China Sea [J]. Geoscience, 2023, 37(02): 259-269. |
[8] | WEI Yongheng, GE Yanyan, WANG Gang, WANG Wenfeng, TIAN Jijun, LI Xin, WU Bin, ZHANG Xiao. In-situ Stress Distribution and Its Influence on Coalbed Methane Development in Tielieke Mining Area, Kubai Coalfield, Xinjiang [J]. Geoscience, 2022, 36(05): 1324-1332. |
[9] | ZHAI Jiayu, ZHANG Songhang, TANG Shuheng, GUO Huiqiu, LIU Bing, JI Chaoqi. Origin and Productivity Response of Gas and Water in Coalbed Methane Field of Yuwang Block at Laochang, Yunnan Province [J]. Geoscience, 2022, 36(05): 1341-1350. |
[10] | LI Jinlong, LI Qian, CAI Yidong, CHEN Wei, CHEN Zhizhu, WANG Jian, XUE Xiaohui. Geological Conditions and Resource Potential of Coalbed Methane Reservoirs in Laochang Mining Area, Yunnan Province [J]. Geoscience, 2022, 36(05): 1351-1359. |
[11] | YAN Taotao, GUO Yilin, MENG Yanjun, CHANG Suoliang, JIN Shangwen, KANG Lifang, FU Xinyu, WANG Qingqing, ZHAO Yuan, ZHANG Yu. Coal Reservoir Gas Content Correction Based on Coalbed Methane Well Production Data [J]. Geoscience, 2022, 36(05): 1360-1370. |
[12] | NAN Tian, CAO Wengeng, WANG Zhuoran, ZHANG Juanjuan, ZHANG Dong. Optimized Groundwater Numerical Simulation Model with Trending Parameter Field [J]. Geoscience, 2022, 36(02): 591-601. |
[13] | DENG Hui, MA Lei, GAO Di, ZHAO Weidong, YANG Man. Aquifer Medium Characterization of Unconsolidated Deposit in Guqiao Mining Area of Anhui Province, Based on Transition Probability Geostatistics [J]. Geoscience, 2022, 36(02): 602-609. |
[14] | QUAN Xuerui, HUANG Yehuan, LIU Chun, GUO Changbao. Numerical Simulation Study on Seismic Magnification Effect of V-shaped Deep-cut Valley on Sichuan-Tibet Railway Line [J]. Geoscience, 2021, 35(01): 38-46. |
[15] | GAO Beidou, WANG Haichao, TIAN Jijun, HAN Xu, FENG Shuo, WANG Di, ZHANG Zhendong. Syncline-confined-water Model of Coalbed Methane Enrichment Area in Liuhuanggou Mining Area, Southern Junggar Coalfield [J]. Geoscience, 2020, 34(02): 281-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||