Geoscience ›› 2025, Vol. 39 ›› Issue (03): 728-751.DOI: 10.19657/j.geoscience.1000-8527.2024.112
• Machine Learning and Its Applications in Mineralogy • Previous Articles Next Articles
WU Xiaohe1,2(), ZHANG Juquan1,2,*(
), DUAN Zhanzhan1,2, ZHANG Lemin1,2, WEN Yujing1,2, GUO Ziqi1,2, LI Qing1,2
Online:
2025-06-10
Published:
2025-07-03
Contact:
ZHANG Juquan
CLC Number:
WU Xiaohe, ZHANG Juquan, DUAN Zhanzhan, ZHANG Lemin, WEN Yujing, GUO Ziqi, LI Qing. The Genesis and Tectonic Significance of Jiandeng Intrusive Rock in the Central North China Craton: Constraints from Zircon U-Pb Chronology and Petrogeochemistry[J]. Geoscience, 2025, 39(03): 728-751.
Fig.1 Diagram of the North China craton tectonic unit((a) from ref. [1,41])and geological map of the Zanhuang region((b) base map modified from ref. [40,42-43])
样品号 | 野外产出形态 | 岩性 | 矿物组合(%) | ||
---|---|---|---|---|---|
Q | P | A | |||
ZH18-1 | 正长花岗岩 (菅等岩体) | 正长花岗岩 | 29 | 11 | 60 |
ZH19-1-1b | 27 | 12 | 61 | ||
ZH19-1-2b | 31 | 11 | 58 | ||
ZH19-2b | 27 | 12 | 61 | ||
ZH18-2 | 细粒变形花岗岩脉 | 正长花岗岩 | 29 | 15 | 56 |
ZH18-3 | 未变形伟晶岩 | 二长花岗伟晶岩 | 31 | 37 | 32 |
ZH18-4 | 粗粒变形花岗岩脉 | 正长花岗岩 | 30 | 10 | 60 |
ZH19-3b | 花岗质岩株 | 正长花岗岩 | 30 | 10 | 60 |
Table 1 Morphology produced in the field, lithology and QAP assemblage characteristics of representativesamples
样品号 | 野外产出形态 | 岩性 | 矿物组合(%) | ||
---|---|---|---|---|---|
Q | P | A | |||
ZH18-1 | 正长花岗岩 (菅等岩体) | 正长花岗岩 | 29 | 11 | 60 |
ZH19-1-1b | 27 | 12 | 61 | ||
ZH19-1-2b | 31 | 11 | 58 | ||
ZH19-2b | 27 | 12 | 61 | ||
ZH18-2 | 细粒变形花岗岩脉 | 正长花岗岩 | 29 | 15 | 56 |
ZH18-3 | 未变形伟晶岩 | 二长花岗伟晶岩 | 31 | 37 | 32 |
ZH18-4 | 粗粒变形花岗岩脉 | 正长花岗岩 | 30 | 10 | 60 |
ZH19-3b | 花岗质岩株 | 正长花岗岩 | 30 | 10 | 60 |
ZH18-1 | ZH18-2 | ZH18-3 | ZH18-4 | ZH19-1-1b | ZH19-1-2b | ZH19-2b | ZH19-3b | |
---|---|---|---|---|---|---|---|---|
SiO2 | 72.64 | 71.07 | 73.98 | 76.04 | 74.25 | 71.29 | 74.14 | 75.31 |
TiO2 | 0.20 | 0.22 | 0.02 | 0.02 | 0.14 | 0.15 | 0.16 | 0.04 |
Al2O3 | 14.27 | 15.17 | 14.77 | 13.43 | 13.72 | 15.36 | 13.77 | 14.10 |
MnO | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
MgO | 0.51 | 0.63 | 0.16 | 0.18 | 0.36 | 0.30 | 0.33 | 0.14 |
CaO | 0.98 | 1.17 | 0.74 | 0.48 | 0.84 | 0.92 | 0.79 | 1.20 |
Na2O | 3.49 | 4.09 | 4.32 | 3.44 | 3.04 | 3.22 | 3.02 | 4.36 |
K2O | 5.57 | 4.78 | 5.02 | 5.44 | 5.48 | 6.51 | 5.51 | 3.77 |
P2O5 | 0.07 | 0.05 | 0.01 | 0.01 | 0.04 | 0.04 | 0.03 | 0.01 |
Fe2O3 | 0.51 | 0.66 | 0.36 | 0.25 | 0.94 | 1.06 | 1.20 | 0.40 |
FeO | 0.61 | 1.07 | 0.17 | 0.16 | 0.27 | 0.18 | 0.11 | 0.12 |
灼失量 | 0.93 | 0.80 | 0.37 | 0.44 | 0.75 | 0.79 | 0.83 | 0.46 |
总和 | 99.86 | 99.86 | 99.95 | 99.89 | 99.88 | 99.85 | 99.90 | 99.93 |
Table 2 The main elements of Jiandeng intrusion, monzogranite pegmatites, coarse-grained deformed granite, granitic stock and fine-grained deformed granite
ZH18-1 | ZH18-2 | ZH18-3 | ZH18-4 | ZH19-1-1b | ZH19-1-2b | ZH19-2b | ZH19-3b | |
---|---|---|---|---|---|---|---|---|
SiO2 | 72.64 | 71.07 | 73.98 | 76.04 | 74.25 | 71.29 | 74.14 | 75.31 |
TiO2 | 0.20 | 0.22 | 0.02 | 0.02 | 0.14 | 0.15 | 0.16 | 0.04 |
Al2O3 | 14.27 | 15.17 | 14.77 | 13.43 | 13.72 | 15.36 | 13.77 | 14.10 |
MnO | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 |
MgO | 0.51 | 0.63 | 0.16 | 0.18 | 0.36 | 0.30 | 0.33 | 0.14 |
CaO | 0.98 | 1.17 | 0.74 | 0.48 | 0.84 | 0.92 | 0.79 | 1.20 |
Na2O | 3.49 | 4.09 | 4.32 | 3.44 | 3.04 | 3.22 | 3.02 | 4.36 |
K2O | 5.57 | 4.78 | 5.02 | 5.44 | 5.48 | 6.51 | 5.51 | 3.77 |
P2O5 | 0.07 | 0.05 | 0.01 | 0.01 | 0.04 | 0.04 | 0.03 | 0.01 |
Fe2O3 | 0.51 | 0.66 | 0.36 | 0.25 | 0.94 | 1.06 | 1.20 | 0.40 |
FeO | 0.61 | 1.07 | 0.17 | 0.16 | 0.27 | 0.18 | 0.11 | 0.12 |
灼失量 | 0.93 | 0.80 | 0.37 | 0.44 | 0.75 | 0.79 | 0.83 | 0.46 |
总和 | 99.86 | 99.86 | 99.95 | 99.89 | 99.88 | 99.85 | 99.90 | 99.93 |
成分 | ZH18-1 | ZH18-2 | ZH18-3 | ZH18-4 | ZH19-1-1b | ZH19-1-2b | ZH19-2b | ZH19-3b |
---|---|---|---|---|---|---|---|---|
Li | 12.18 | 12.67 | 5.14 | 3.65 | 11.25 | 11.66 | 10.19 | 5.81 |
Be | 1.27 | 1.76 | 1.09 | 1.05 | 1.50 | 1.36 | 1.50 | 2.09 |
Sc | 1.60 | 2.53 | 0.78 | 0.33 | 1.32 | 1.38 | 1.71 | 0.64 |
V | 14.75 | 15.28 | 4.38 | 6.83 | 11.48 | 10.40 | 11.73 | 4.92 |
Cr | 2.54 | 2.97 | 0.74 | 0.67 | 3.50 | 2.99 | 4.28 | 2.94 |
Co | 1.53 | 2.41 | 0.36 | 0.38 | 1.31 | 1.58 | 1.95 | 0.90 |
Ni | 2.44 | 10.58 | 2.58 | 1.51 | 2.98 | 2.40 | 5.29 | 2.32 |
Cu | 3.71 | 4.26 | 3.80 | 11.69 | 4.91 | 4.87 | 7.21 | 3.57 |
Ga | 15.40 | 15.63 | 14.89 | 13.89 | 14.23 | 15.06 | 15.71 | 16.25 |
Rb | 128.26 | 106.96 | 136.50 | 107.57 | 134.36 | 150.29 | 177.72 | 133.65 |
Sr | 142.77 | 143.44 | 87.35 | 122.95 | 140.19 | 167.18 | 115.08 | 138.62 |
Zr | 189.66 | 171.95 | 44.98 | 81.40 | 165.05 | 124.89 | 115.00 | 72.38 |
Nb | 3.17 | 6.50 | 2.31 | 0.95 | 4.44 | 3.22 | 4.67 | 2.45 |
Mo | 0.38 | 0.14 | 0.07 | 0.09 | 0.11 | 0.62 | 0.12 | 0.21 |
Cd | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 |
In | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
Cs | 3.39 | 1.93 | 3.09 | 1.84 | 5.54 | 3.13 | 4.24 | 2.36 |
Ba | 637.19 | 574.39 | 112.60 | 466.29 | 488.58 | 704.87 | 442.66 | 244.08 |
Hf | 5.86 | 5.50 | 1.70 | 4.11 | 5.46 | 4.08 | 4.01 | 2.69 |
Ta | 0.31 | 0.59 | 0.25 | 0.17 | 0.90 | 0.37 | 0.23 | 0.44 |
W | 0.25 | 0.12 | 0.10 | 0.12 | 0.18 | 0.23 | 0.31 | 0.27 |
Tl | 0.51 | 0.45 | 0.62 | 0.44 | 0.54 | 0.62 | 0.77 | 0.64 |
Pb | 12.55 | 12.68 | 22.51 | 10.27 | 12.43 | 16.61 | 14.93 | 20.16 |
Bi | 0.08 | 0.06 | 0.04 | 0.11 | 0.20 | 0.09 | 0.04 | 0.18 |
Th | 12.82 | 14.96 | 0.38 | 3.85 | 16.57 | 14.98 | 11.82 | 19.54 |
U | 0.98 | 1.10 | 0.77 | 0.56 | 1.08 | 0.89 | 0.61 | 1.43 |
La | 38.34 | 30.43 | 1.61 | 4.92 | 27.46 | 22.57 | 16.52 | 2.05 |
Ce | 72.49 | 56.47 | 2.65 | 9.68 | 48.75 | 45.58 | 33.68 | 3.51 |
Pr | 8.41 | 6.55 | 0.37 | 1.15 | 5.80 | 5.23 | 3.50 | 0.49 |
Nd | 28.44 | 21.76 | 1.43 | 3.95 | 19.68 | 17.12 | 11.69 | 1.85 |
Sm | 4.29 | 3.50 | 0.38 | 0.66 | 3.01 | 2.57 | 1.84 | 0.50 |
Eu | 0.86 | 0.68 | 0.22 | 0.47 | 0.62 | 0.73 | 0.51 | 0.33 |
Gd | 3.61 | 3.02 | 0.33 | 0.54 | 2.70 | 2.32 | 1.60 | 0.43 |
Tb | 0.33 | 0.36 | 0.06 | 0.06 | 0.25 | 0.21 | 0.17 | 0.08 |
Dy | 1.08 | 1.68 | 0.44 | 0.26 | 0.95 | 0.76 | 0.67 | 0.48 |
Ho | 0.17 | 0.29 | 0.10 | 0.04 | 0.16 | 0.13 | 0.11 | 0.09 |
Er | 0.58 | 0.90 | 0.32 | 0.12 | 0.55 | 0.41 | 0.36 | 0.25 |
Tm | 0.07 | 0.14 | 0.07 | 0.03 | 0.09 | 0.06 | 0.06 | 0.05 |
Yb | 0.47 | 0.91 | 0.45 | 0.15 | 0.58 | 0.38 | 0.38 | 0.29 |
Lu | 0.07 | 0.13 | 0.07 | 0.03 | 0.09 | 0.06 | 0.06 | 0.04 |
Y | 4.67 | 8.03 | 3.14 | 1.14 | 4.59 | 3.43 | 3.05 | 2.58 |
ΣREE | 159.21 | 126.82 | 8.51 | 22.06 | 110.68 | 98.13 | 71.15 | 10.43 |
LREE | 152.83 | 119.39 | 6.66 | 20.83 | 105.32 | 93.80 | 67.75 | 8.73 |
HREE | 6.38 | 7.44 | 1.85 | 1.23 | 5.35 | 4.33 | 3.40 | 1.70 |
LREE/HREE | 23.97 | 16.05 | 3.60 | 16.94 | 19.67 | 21.68 | 19.90 | 5.14 |
(La/Yb)N | 59.02 | 23.89 | 2.58 | 24.19 | 34.23 | 42.66 | 31.35 | 5.12 |
δEu | 0.65 | 0.62 | 1.90 | 2.34 | 0.65 | 0.89 | 0.89 | 2.12 |
δCe | 0.95 | 0.94 | 0.81 | 0.96 | 0.90 | 0.99 | 1.03 | 0.83 |
M | 2.59 | 2.32 | 1.41 | 1.44 | 1.29 | 1.36 | 1.28 | 1.36 |
T(℃) | 717.75 | 727.93 | 685.51 | 727.71 | 796.66 | 767.56 | 766.47 | 724.18 |
Table 3 Trace elements of Jiandeng intrusion, monzogranite pegmatites, coarse-grained deformed granite, granitic stock and fine-grained deformed granite (10-6)
成分 | ZH18-1 | ZH18-2 | ZH18-3 | ZH18-4 | ZH19-1-1b | ZH19-1-2b | ZH19-2b | ZH19-3b |
---|---|---|---|---|---|---|---|---|
Li | 12.18 | 12.67 | 5.14 | 3.65 | 11.25 | 11.66 | 10.19 | 5.81 |
Be | 1.27 | 1.76 | 1.09 | 1.05 | 1.50 | 1.36 | 1.50 | 2.09 |
Sc | 1.60 | 2.53 | 0.78 | 0.33 | 1.32 | 1.38 | 1.71 | 0.64 |
V | 14.75 | 15.28 | 4.38 | 6.83 | 11.48 | 10.40 | 11.73 | 4.92 |
Cr | 2.54 | 2.97 | 0.74 | 0.67 | 3.50 | 2.99 | 4.28 | 2.94 |
Co | 1.53 | 2.41 | 0.36 | 0.38 | 1.31 | 1.58 | 1.95 | 0.90 |
Ni | 2.44 | 10.58 | 2.58 | 1.51 | 2.98 | 2.40 | 5.29 | 2.32 |
Cu | 3.71 | 4.26 | 3.80 | 11.69 | 4.91 | 4.87 | 7.21 | 3.57 |
Ga | 15.40 | 15.63 | 14.89 | 13.89 | 14.23 | 15.06 | 15.71 | 16.25 |
Rb | 128.26 | 106.96 | 136.50 | 107.57 | 134.36 | 150.29 | 177.72 | 133.65 |
Sr | 142.77 | 143.44 | 87.35 | 122.95 | 140.19 | 167.18 | 115.08 | 138.62 |
Zr | 189.66 | 171.95 | 44.98 | 81.40 | 165.05 | 124.89 | 115.00 | 72.38 |
Nb | 3.17 | 6.50 | 2.31 | 0.95 | 4.44 | 3.22 | 4.67 | 2.45 |
Mo | 0.38 | 0.14 | 0.07 | 0.09 | 0.11 | 0.62 | 0.12 | 0.21 |
Cd | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 |
In | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
Cs | 3.39 | 1.93 | 3.09 | 1.84 | 5.54 | 3.13 | 4.24 | 2.36 |
Ba | 637.19 | 574.39 | 112.60 | 466.29 | 488.58 | 704.87 | 442.66 | 244.08 |
Hf | 5.86 | 5.50 | 1.70 | 4.11 | 5.46 | 4.08 | 4.01 | 2.69 |
Ta | 0.31 | 0.59 | 0.25 | 0.17 | 0.90 | 0.37 | 0.23 | 0.44 |
W | 0.25 | 0.12 | 0.10 | 0.12 | 0.18 | 0.23 | 0.31 | 0.27 |
Tl | 0.51 | 0.45 | 0.62 | 0.44 | 0.54 | 0.62 | 0.77 | 0.64 |
Pb | 12.55 | 12.68 | 22.51 | 10.27 | 12.43 | 16.61 | 14.93 | 20.16 |
Bi | 0.08 | 0.06 | 0.04 | 0.11 | 0.20 | 0.09 | 0.04 | 0.18 |
Th | 12.82 | 14.96 | 0.38 | 3.85 | 16.57 | 14.98 | 11.82 | 19.54 |
U | 0.98 | 1.10 | 0.77 | 0.56 | 1.08 | 0.89 | 0.61 | 1.43 |
La | 38.34 | 30.43 | 1.61 | 4.92 | 27.46 | 22.57 | 16.52 | 2.05 |
Ce | 72.49 | 56.47 | 2.65 | 9.68 | 48.75 | 45.58 | 33.68 | 3.51 |
Pr | 8.41 | 6.55 | 0.37 | 1.15 | 5.80 | 5.23 | 3.50 | 0.49 |
Nd | 28.44 | 21.76 | 1.43 | 3.95 | 19.68 | 17.12 | 11.69 | 1.85 |
Sm | 4.29 | 3.50 | 0.38 | 0.66 | 3.01 | 2.57 | 1.84 | 0.50 |
Eu | 0.86 | 0.68 | 0.22 | 0.47 | 0.62 | 0.73 | 0.51 | 0.33 |
Gd | 3.61 | 3.02 | 0.33 | 0.54 | 2.70 | 2.32 | 1.60 | 0.43 |
Tb | 0.33 | 0.36 | 0.06 | 0.06 | 0.25 | 0.21 | 0.17 | 0.08 |
Dy | 1.08 | 1.68 | 0.44 | 0.26 | 0.95 | 0.76 | 0.67 | 0.48 |
Ho | 0.17 | 0.29 | 0.10 | 0.04 | 0.16 | 0.13 | 0.11 | 0.09 |
Er | 0.58 | 0.90 | 0.32 | 0.12 | 0.55 | 0.41 | 0.36 | 0.25 |
Tm | 0.07 | 0.14 | 0.07 | 0.03 | 0.09 | 0.06 | 0.06 | 0.05 |
Yb | 0.47 | 0.91 | 0.45 | 0.15 | 0.58 | 0.38 | 0.38 | 0.29 |
Lu | 0.07 | 0.13 | 0.07 | 0.03 | 0.09 | 0.06 | 0.06 | 0.04 |
Y | 4.67 | 8.03 | 3.14 | 1.14 | 4.59 | 3.43 | 3.05 | 2.58 |
ΣREE | 159.21 | 126.82 | 8.51 | 22.06 | 110.68 | 98.13 | 71.15 | 10.43 |
LREE | 152.83 | 119.39 | 6.66 | 20.83 | 105.32 | 93.80 | 67.75 | 8.73 |
HREE | 6.38 | 7.44 | 1.85 | 1.23 | 5.35 | 4.33 | 3.40 | 1.70 |
LREE/HREE | 23.97 | 16.05 | 3.60 | 16.94 | 19.67 | 21.68 | 19.90 | 5.14 |
(La/Yb)N | 59.02 | 23.89 | 2.58 | 24.19 | 34.23 | 42.66 | 31.35 | 5.12 |
δEu | 0.65 | 0.62 | 1.90 | 2.34 | 0.65 | 0.89 | 0.89 | 2.12 |
δCe | 0.95 | 0.94 | 0.81 | 0.96 | 0.90 | 0.99 | 1.03 | 0.83 |
M | 2.59 | 2.32 | 1.41 | 1.44 | 1.29 | 1.36 | 1.28 | 1.36 |
T(℃) | 717.75 | 727.93 | 685.51 | 727.71 | 796.66 | 767.56 | 766.47 | 724.18 |
Fig.8 Diagram of the standardized distribution pattern of rare earth element chondrite meteorite (a) and the normalized spider web of trace element primitive mantle (b)
样品号 | 含量(10-6) | Th/U | 同位素比值 | rho | 同位素年龄(Ma) | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | ||||||||||||||||||||||||
ZH18-1 | Min | 28 | 62 | 0.15 | 0.1280 | 0.0025 | 2.3781 | 0.0436 | 0.1345 | 0.0020 | 0.6950 | 2072 | 12 | 1236 | 12 | 813 | 11 | ||||||||||||||||||||
Max | 1729 | 1884 | 1.15 | 0.1663 | 0.0013 | 11.1929 | 0.3867 | 0.4947 | 0.0152 | 0.9586 | 2522 | 32 | 2539 | 44 | 2591 | 72 | |||||||||||||||||||||
Avg | 213 | 425 | 0.56 | 0.1562 | 0.0018 | 8.2923 | 0.1807 | 0.3767 | 0.0070 | 0.8413 | 2410 | 20 | 2197 | 19 | 2037 | 32 | |||||||||||||||||||||
ZH19- 1-1b | Min | 75 | 140 | 0.21 | 0.1401 | 0.0017 | 5.4676 | 0.1036 | 0.2819 | 0.0032 | 0.5330 | 2229 | 16 | 1896 | 15 | 1601 | 15 | ||||||||||||||||||||
Max | 871 | 633 | 5.37 | 0.1643 | 0.0023 | 10.6698 | 0.2516 | 0.4723 | 0.0108 | 0.9725 | 2502 | 27 | 2495 | 38 | 2494 | 53 | |||||||||||||||||||||
Avg | 237 | 245 | 1.20 | 0.1534 | 0.0020 | 8.2413 | 0.1748 | 0.3862 | 0.0068 | 0.8044 | 2383 | 22 | 2242 | 20 | 2099 | 32 | |||||||||||||||||||||
ZH19- 1-2b | Min | 59 | 112 | 0.20 | 0.1272 | 0.0018 | 3.4471 | 0.0867 | 0.1953 | 0.0034 | 0.6727 | 2059 | 16 | 1515 | 15 | 1150 | 18 | ||||||||||||||||||||
Max | 833 | 452 | 2.32 | 0.1643 | 0.0023 | 11.0064 | 0.2889 | 0.4856 | 0.0132 | 0.9952 | 2502 | 28 | 2524 | 29 | 2552 | 58 | |||||||||||||||||||||
Avg | 218 | 267 | 0.76 | 0.1525 | 0.0021 | 8.0571 | 0.1841 | 0.3779 | 0.0073 | 0.8262 | 2375 | 23 | 2207 | 21 | 2056 | 34 | |||||||||||||||||||||
ZH18-3 | Min | 252 | 73 | 0.15 | 0.1261 | 0.0014 | 2.3652 | 0.0292 | 0.1358 | 0.0013 | 0.7068 | 2044 | 14 | 1232 | 9 | 821 | 7 | ||||||||||||||||||||
Max | 1538 | 2296 | 1.15 | 0.1652 | 0.0026 | 11.1065 | 0.4401 | 0.5008 | 0.0173 | 0.9573 | 2510 | 27 | 2532 | 45 | 2617 | 80 | |||||||||||||||||||||
Avg | 378 | 835 | 0.52 | 0.1503 | 0.0018 | 5.8881 | 0.1528 | 0.2769 | 0.0061 | 0.8408 | 2343 | 20 | 1894 | 21 | 1556 | 30 | |||||||||||||||||||||
ZH18-4 | Min | 20 | 150 | 0.03 | 0.1188 | 0.0013 | 1.5191 | 0.0361 | 0.0922 | 0.0015 | 0.6525 | 1939 | 11 | 938 | 10 | 569 | 9 | ||||||||||||||||||||
Max | 2161 | 2455 | 1.07 | 0.1657 | 0.0025 | 10.2253 | 0.3616 | 0.5330 | 0.0190 | 0.9814 | 2515 | 31 | 2455 | 56 | 2754 | 80 | |||||||||||||||||||||
Avg | 385 | 1357 | 0.25 | 0.1467 | 0.0017 | 5.7666 | 0.1423 | 0.2794 | 0.0061 | 0.8596 | 2302 | 20 | 1856 | 22 | 1561 | 30 | |||||||||||||||||||||
ZH19-3b | Min | 64 | 117 | 0.13 | 0.1172 | 0.0017 | 1.8639 | 0.0470 | 0.1145 | 0.0022 | 0.6134 | 1914 | 22 | 1068 | 14 | 699 | 13 | ||||||||||||||||||||
Max | 1029 | 1618 | 1.68 | 0.1598 | 0.0030 | 10.7330 | 0.2912 | 0.5214 | 0.0105 | 0.9197 | 2453 | 37 | 2500 | 48 | 2705 | 51 | |||||||||||||||||||||
Avg | 277 | 610 | 0.53 | 0.1423 | 0.0021 | 6.5445 | 0.1730 | 0.3240 | 0.0067 | 0.7679 | 2248 | 26 | 1981 | 24 | 1785 | 32 | |||||||||||||||||||||
ZH18-2 | Min | 2 | 54 | 0.03 | 0.1106 | 0.0015 | 2.6552 | 0.0795 | 0.1735 | 0.0037 | 0.6925 | 1810 | 12 | 1316 | 12 | 1032 | 19 | ||||||||||||||||||||
Max | 969 | 1346 | 2.96 | 0.1670 | 0.0024 | 11.7878 | 0.3210 | 0.5220 | 0.0131 | 0.9595 | 2528 | 36 | 2588 | 46 | 2708 | 66 | |||||||||||||||||||||
Avg | 277 | 294 | 1.01 | 0.1506 | 0.0019 | 8.3723 | 0.1753 | 0.3944 | 0.0069 | 0.8225 | 2335 | 21 | 2227 | 19 | 2131 | 32 |
Table 4 Summary data of LA-ICP-MS zircon determination
样品号 | 含量(10-6) | Th/U | 同位素比值 | rho | 同位素年龄(Ma) | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | ||||||||||||||||||||||||
ZH18-1 | Min | 28 | 62 | 0.15 | 0.1280 | 0.0025 | 2.3781 | 0.0436 | 0.1345 | 0.0020 | 0.6950 | 2072 | 12 | 1236 | 12 | 813 | 11 | ||||||||||||||||||||
Max | 1729 | 1884 | 1.15 | 0.1663 | 0.0013 | 11.1929 | 0.3867 | 0.4947 | 0.0152 | 0.9586 | 2522 | 32 | 2539 | 44 | 2591 | 72 | |||||||||||||||||||||
Avg | 213 | 425 | 0.56 | 0.1562 | 0.0018 | 8.2923 | 0.1807 | 0.3767 | 0.0070 | 0.8413 | 2410 | 20 | 2197 | 19 | 2037 | 32 | |||||||||||||||||||||
ZH19- 1-1b | Min | 75 | 140 | 0.21 | 0.1401 | 0.0017 | 5.4676 | 0.1036 | 0.2819 | 0.0032 | 0.5330 | 2229 | 16 | 1896 | 15 | 1601 | 15 | ||||||||||||||||||||
Max | 871 | 633 | 5.37 | 0.1643 | 0.0023 | 10.6698 | 0.2516 | 0.4723 | 0.0108 | 0.9725 | 2502 | 27 | 2495 | 38 | 2494 | 53 | |||||||||||||||||||||
Avg | 237 | 245 | 1.20 | 0.1534 | 0.0020 | 8.2413 | 0.1748 | 0.3862 | 0.0068 | 0.8044 | 2383 | 22 | 2242 | 20 | 2099 | 32 | |||||||||||||||||||||
ZH19- 1-2b | Min | 59 | 112 | 0.20 | 0.1272 | 0.0018 | 3.4471 | 0.0867 | 0.1953 | 0.0034 | 0.6727 | 2059 | 16 | 1515 | 15 | 1150 | 18 | ||||||||||||||||||||
Max | 833 | 452 | 2.32 | 0.1643 | 0.0023 | 11.0064 | 0.2889 | 0.4856 | 0.0132 | 0.9952 | 2502 | 28 | 2524 | 29 | 2552 | 58 | |||||||||||||||||||||
Avg | 218 | 267 | 0.76 | 0.1525 | 0.0021 | 8.0571 | 0.1841 | 0.3779 | 0.0073 | 0.8262 | 2375 | 23 | 2207 | 21 | 2056 | 34 | |||||||||||||||||||||
ZH18-3 | Min | 252 | 73 | 0.15 | 0.1261 | 0.0014 | 2.3652 | 0.0292 | 0.1358 | 0.0013 | 0.7068 | 2044 | 14 | 1232 | 9 | 821 | 7 | ||||||||||||||||||||
Max | 1538 | 2296 | 1.15 | 0.1652 | 0.0026 | 11.1065 | 0.4401 | 0.5008 | 0.0173 | 0.9573 | 2510 | 27 | 2532 | 45 | 2617 | 80 | |||||||||||||||||||||
Avg | 378 | 835 | 0.52 | 0.1503 | 0.0018 | 5.8881 | 0.1528 | 0.2769 | 0.0061 | 0.8408 | 2343 | 20 | 1894 | 21 | 1556 | 30 | |||||||||||||||||||||
ZH18-4 | Min | 20 | 150 | 0.03 | 0.1188 | 0.0013 | 1.5191 | 0.0361 | 0.0922 | 0.0015 | 0.6525 | 1939 | 11 | 938 | 10 | 569 | 9 | ||||||||||||||||||||
Max | 2161 | 2455 | 1.07 | 0.1657 | 0.0025 | 10.2253 | 0.3616 | 0.5330 | 0.0190 | 0.9814 | 2515 | 31 | 2455 | 56 | 2754 | 80 | |||||||||||||||||||||
Avg | 385 | 1357 | 0.25 | 0.1467 | 0.0017 | 5.7666 | 0.1423 | 0.2794 | 0.0061 | 0.8596 | 2302 | 20 | 1856 | 22 | 1561 | 30 | |||||||||||||||||||||
ZH19-3b | Min | 64 | 117 | 0.13 | 0.1172 | 0.0017 | 1.8639 | 0.0470 | 0.1145 | 0.0022 | 0.6134 | 1914 | 22 | 1068 | 14 | 699 | 13 | ||||||||||||||||||||
Max | 1029 | 1618 | 1.68 | 0.1598 | 0.0030 | 10.7330 | 0.2912 | 0.5214 | 0.0105 | 0.9197 | 2453 | 37 | 2500 | 48 | 2705 | 51 | |||||||||||||||||||||
Avg | 277 | 610 | 0.53 | 0.1423 | 0.0021 | 6.5445 | 0.1730 | 0.3240 | 0.0067 | 0.7679 | 2248 | 26 | 1981 | 24 | 1785 | 32 | |||||||||||||||||||||
ZH18-2 | Min | 2 | 54 | 0.03 | 0.1106 | 0.0015 | 2.6552 | 0.0795 | 0.1735 | 0.0037 | 0.6925 | 1810 | 12 | 1316 | 12 | 1032 | 19 | ||||||||||||||||||||
Max | 969 | 1346 | 2.96 | 0.1670 | 0.0024 | 11.7878 | 0.3210 | 0.5220 | 0.0131 | 0.9595 | 2528 | 36 | 2588 | 46 | 2708 | 66 | |||||||||||||||||||||
Avg | 277 | 294 | 1.01 | 0.1506 | 0.0019 | 8.3723 | 0.1753 | 0.3944 | 0.0069 | 0.8225 | 2335 | 21 | 2227 | 19 | 2131 | 32 |
Fig.12 Relationships between 10000Ga/Al and Zr, Y, FeOT/MgO in whole rock ((a), (c), (e) from ref.[71]), Zr+Nb+Ce+Y with FeOT/MgO, 10000Ga/A ((b), (d) from ref.[71]) and zircon Pb-Th map((f) from ref.[70])
Fig.14 Triangular classification map of granitic rocks ((a) base map ref. [82]), granitic rock energy zone ((b) base map ref. [82]) and granitic rock isothermal isobaric map((c) based on ref. [84]) FMSB=(FeOT+MgO)wt%*(Ba+Sr)wt%
样品号 | U | Pb | Hf | Er | Lu | Y | Lu/Hf | U/Yb | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZH18 -1 | Min | 62 | 71 | 8144 | 50 | 28 | 337 | 0.002 | 0.225 | |||||||
Max | 1884 | 847 | 13481 | 359 | 119 | 2477 | 0.012 | 3.723 | ||||||||
Avg | 425 | 250 | 9673 | 165 | 61 | 1144 | 0.006 | 1.388 | ||||||||
ZH19- 1-1b | Min | 140 | 245 | 4320 | 48 | 32 | 382 | 0.004 | 0.234 | |||||||
Max | 633 | 931 | 9384 | 412 | 92 | 3351 | 0.021 | 2.409 | ||||||||
Avg | 245 | 608 | 7255 | 132 | 46 | 993 | 0.007 | 1.041 | ||||||||
ZH19- 1-2b | Min | 112 | 265 | 4879 | 42 | 18 | 324 | 0.003 | 0.363 | |||||||
Max | 452 | 1877 | 9960 | 227 | 68 | 1597 | 0.010 | 3.281 | ||||||||
Avg | 267 | 632 | 7523 | 96 | 35 | 730 | 0.005 | 1.537 | ||||||||
ZH18-3 | Min | 73 | 80 | 7387 | 88 | 36 | 591 | 0.003 | 0.318 | |||||||
Max | 2296 | 1151 | 11770 | 330 | 119 | 2384 | 0.013 | 5.016 | ||||||||
Avg | 835 | 415 | 9932 | 220 | 80 | 1553 | 0.008 | 2.105 | ||||||||
ZH18-4 | Min | 150 | 41 | 664 | 10 | 25 | 45 | 0.001 | 1.819 | |||||||
Max | 2455 | 1584 | 45044 | 219 | 569 | 1809 | 0.068 | 126.210 | ||||||||
Avg | 1357 | 587 | 13407 | 102 | 119 | 734 | 0.010 | 19.023 | ||||||||
ZH19 -3b | Min | 117 | 336 | 4406 | 49 | 22 | 316 | 0.003 | 0.735 | |||||||
Max | 1618 | 3774 | 12065 | 172 | 66 | 1266 | 0.012 | 5.142 | ||||||||
Avg | 610 | 1414 | 7260 | 93 | 38 | 708 | 0.006 | 2.927 | ||||||||
ZH18-2 | Min | 54 | 23 | 8365 | 18 | 28 | 84 | 0.002 | 0.287 | |||||||
Max | 1346 | 1621 | 13557 | 371 | 128 | 2485 | 0.014 | 2.932 | ||||||||
Avg | 294 | 278 | 10772 | 192 | 79 | 1278 | 0.008 | 0.754 |
Table 5 Brief table of trace elements in some zircons(10-6)
样品号 | U | Pb | Hf | Er | Lu | Y | Lu/Hf | U/Yb | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZH18 -1 | Min | 62 | 71 | 8144 | 50 | 28 | 337 | 0.002 | 0.225 | |||||||
Max | 1884 | 847 | 13481 | 359 | 119 | 2477 | 0.012 | 3.723 | ||||||||
Avg | 425 | 250 | 9673 | 165 | 61 | 1144 | 0.006 | 1.388 | ||||||||
ZH19- 1-1b | Min | 140 | 245 | 4320 | 48 | 32 | 382 | 0.004 | 0.234 | |||||||
Max | 633 | 931 | 9384 | 412 | 92 | 3351 | 0.021 | 2.409 | ||||||||
Avg | 245 | 608 | 7255 | 132 | 46 | 993 | 0.007 | 1.041 | ||||||||
ZH19- 1-2b | Min | 112 | 265 | 4879 | 42 | 18 | 324 | 0.003 | 0.363 | |||||||
Max | 452 | 1877 | 9960 | 227 | 68 | 1597 | 0.010 | 3.281 | ||||||||
Avg | 267 | 632 | 7523 | 96 | 35 | 730 | 0.005 | 1.537 | ||||||||
ZH18-3 | Min | 73 | 80 | 7387 | 88 | 36 | 591 | 0.003 | 0.318 | |||||||
Max | 2296 | 1151 | 11770 | 330 | 119 | 2384 | 0.013 | 5.016 | ||||||||
Avg | 835 | 415 | 9932 | 220 | 80 | 1553 | 0.008 | 2.105 | ||||||||
ZH18-4 | Min | 150 | 41 | 664 | 10 | 25 | 45 | 0.001 | 1.819 | |||||||
Max | 2455 | 1584 | 45044 | 219 | 569 | 1809 | 0.068 | 126.210 | ||||||||
Avg | 1357 | 587 | 13407 | 102 | 119 | 734 | 0.010 | 19.023 | ||||||||
ZH19 -3b | Min | 117 | 336 | 4406 | 49 | 22 | 316 | 0.003 | 0.735 | |||||||
Max | 1618 | 3774 | 12065 | 172 | 66 | 1266 | 0.012 | 5.142 | ||||||||
Avg | 610 | 1414 | 7260 | 93 | 38 | 708 | 0.006 | 2.927 | ||||||||
ZH18-2 | Min | 54 | 23 | 8365 | 18 | 28 | 84 | 0.002 | 0.287 | |||||||
Max | 1346 | 1621 | 13557 | 371 | 128 | 2485 | 0.014 | 2.932 | ||||||||
Avg | 294 | 278 | 10772 | 192 | 79 | 1278 | 0.008 | 0.754 |
[1] | ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202. |
[2] | ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240. |
[3] | ROGERS J J W, SANTOSH M. Supercontinents in earth history[J]. Gondwana Research, 2003, 6(3): 357-368. |
[4] | WAN Y S, LIU D Y, SONG B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance[J]. Journal of Asian Earth Sciences, 2005, 24(5): 563-575. |
[5] | WAN Y S, LIU D Y, NUTMAN A, et al. Multiple 3.8-3.1Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex),Anshan, North China Craton[J]. Journal of Asian Earth Sciences, 2012, 54/55: 18-30. |
[6] | 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 2010, 29(1): 24-36. |
[7] | 万渝生, 董春艳, 任鹏, 等. 华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化: 综述[J]. 岩石学报, 2017, 33(5): 1405-1419. |
[8] | 万渝生, 董春艳, 颉颃强, 等. 华北克拉通太古宙研究若干进展[J]. 地球学报, 2015, 36(6): 685-700. |
[9] | 马杏垣, 吴正文, 谭应佳, 等. 华北地台基底构造[J]. 地质学报, 1979(4): 293-304. |
[10] | 唐先梅, 刘树文. 太行山北段晚太古宙变质杂岩伸展变形带的初步研究[J]. 北京大学学报(自然科学版), 1997, (4): 41-49. |
[11] | 肖玲玲, 刘福来. 华北克拉通中部造山带早前寒武纪变质演化历史评述[J]. 岩石学报, 2015, 31(10): 3012-3044. |
[12] |
李三忠, 李玺瑶, 戴黎明, 等. 前寒武纪地球动力学(Ⅵ): 华北克拉通形成[J]. 地学前缘, 2015, 22(6): 77-96.
DOI |
[13] | 朱日祥, 郑天愉. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报, 2009, 54(14): 1950-1961. |
[14] | LI S S, SANTOSH M, TENG X M, et al. Paleoproterozoic arc-continent collision in the North China Craton: Evidence from the Zanhuang Complex[J]. Precambrian Research, 2016, 286: 281-305. |
[15] | ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: A synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25. |
[16] | LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 1992, 20(4): 339. |
[17] | 吕畅, 王浩, 杨进辉, 等. 华北克拉通始太古代演化——来自冀东38亿年片麻岩锆石Hf-O同位素的记录[J]. 岩石学报, 2024, 40(03): 689-701. |
[18] | KUSKY T M, LI J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4): 383-397. |
[19] | KUSKY T, LI J H, SANTOSH M. The Paleoproterozoic North Hebei Orogen: North China Craton’s collisional suture with the Columbia supercontinent[J]. Gondwana Research, 2007, 12(1/2): 4-28. |
[20] | 李江海. 华北中北部晚太古代高压麻粒岩的地质产状及其出露的区域构造背景[J]. 岩石学报, 1998, 14(2): 176-189. |
[21] | 李江海, 钱祥麟, 黄雄南, 等. 华北陆块基底构造格局及早期大陆克拉通化过程[J]. 岩石学报, 2000, 16(1): 1-10. |
[22] | 李江海, 侯贵廷, 黄雄南, 等. 华北克拉通对前寒武纪超大陆旋回的基本制约[J]. 岩石学报, 2001, 17(2): 177-186. |
[23] |
李江海, 侯贵廷, 刘守偈. 早期碰撞造山过程与板块构造: 前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
DOI |
[24] | WANG J P, KUSKY T, POLAT A, et al. A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton[J]. Tectonophysics, 2013, 608: 929-946. |
[25] | WANG J P, KUSKY T, WANG L, et al. A Neoarchean subduction polarity reversal event in the North China Craton[J]. Lithos, 2015, 220/221/222/223: 133-146. |
[26] | WANG J P, KUSKY T, WANG L, et al. Petrogenesis and geochemistry ofcirca 2.5 Ga granitoids in the Zanhuang Massif: Implications for magmatic source and Neoarchean metamorphism of the North China Craton[J]. Lithos, 2017, 268/269/270/271: 149-162. |
[27] | KUSKY T M, POLAT A, WINDLEY B F, et al. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162: 387-432. |
[28] | DENG H, KUSKY T, POLAT A, et al. Geochemistry of Neoarchean mafic volcanic rocks and late mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for geodynamic setting[J]. Lithos, 2013, 175/176: 193-212. |
[29] | DENG H, KUSKY T, POLAT A, et al. Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton[J]. Lithos, 2014, 205: 359-378. |
[30] | DU L L, YANG C H, WYMAN D A, et al. 2090—2070 Ma A-type granitoids in Zanhuang Complex: Further evidence on a Paleoproterozoic Rift-related tectonic regime in the Trans-North China Orogen[J]. Lithos, 2016, 254/255: 18-35. |
[31] | DU L L, YANG C H, WYMAN D A, et al. Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex: Constraints from zircon U-Pb ages and Hf isotopes of sandstones and dacite[J]. Precambrian Research, 2016, 286: 59-100. |
[32] | XIE H Q, LIU D Y, YIN X Y, et al. Formation age and tectonic environment of the Gantaohe Group, North China Craton: Geology, geochemistry, SHRIMP zircon geochronology and Hf-Nd isotopic systematics[J]. Chinese Science Bulletin, 2012, 57(36): 4735-4745. |
[33] | ZHAO G C, CAWOOD P A, WILDE S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan complex, North China Craton: Petrology and tectonic implications[J]. Journal of Petrology, 2001, 42(6): 1141-1170. |
[34] | ZHAO G C, GUO J H. Precambrian geology of China: Preface[J]. Precambrian Research, 2012, 222/223: 1-12. |
[35] | 翟明国, 卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J]. 中国科学:地球科学, 2000, 30(增): 129-137. |
[36] |
万渝生, 董春艳, 颉颃强, 等. 华北克拉通新太古代晚期岩浆作用: 对构造体制和克拉通化的启示[J]. 地学前缘, 2024, 31(1): 77-94.
DOI |
[37] | 伍家善, 耿元生, 沈其韩, 等. 中朝古大陆太古宙地质特征及构造演化[M]. 北京: 地质出版社, 1998. |
[38] |
郭晓伟, 杨延伟, 张宇. 华北克拉通南缘箕山地区新太古代末期地壳演化——来自叶寨花岗岩年代学和地球化学证据[J]. 现代地质, 2025, 39(01): 83-95.
DOI |
[39] | YANG C H, DU L L, REN L D, et al. Delineation of the Ca. 2.7 Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications[J]. Journal of Asian Earth Sciences, 2013, 72: 178-189. |
[40] | 杨崇辉, 杜利林, 任留东, 等. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景[J]. 地学前缘, 2011, 18(2): 62-78. |
[41] | ZHAO G, YIN C, GUO J, et al. Metamorphism of the Luliang amphibolite: Implications for the tectonic evolution of the North China Craton[J]. American Journal of Science, 2010, 310(10): 1480-1502. |
[42] | TRAP P, FAURE M, LIN W, et al. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2009, 172(1/2): 80-98. |
[43] | 河北省地质矿产局. 河北北京天津区域志[M]. 北京: 地质出版社, 1989. |
[44] | 杨崇辉, 杜利林, 任留东, 等. 河北赞皇地区许亭花岗岩的时代及成因: 对华北克拉通中部带构造演化的制约[J]. 岩石学报, 2011, 27(4): 1003-1016. |
[45] | 王岳军, 范蔚茗, 郭锋, 等. 赞皇变质穹隆黑云母40Ar/39Ar年代学研究及其对构造热事件的约束[J]. 岩石学报, 2003, 19(1): 131-140. |
[46] | 牛树银. 太行山阜平、赞皇隆起是中新生代变质核杂岩[J]. 地质科技情报, 1994(2): 15-16. |
[47] | 牛树银, 许传诗, 国连杰, 等. 太行山变质核杂岩的特征及成因探讨[J]. 河北地质学院学报, 1994(1): 43-53. |
[48] | TRAP P, FAURE M, LIN W, et al. The Lüliang Massif: A key area for the understanding of the Palaeoproterozoic Trans-North China Belt, North China Craton[J]. Geological Society,London, Special Publications, 2009, 323(1): 99-125. |
[49] | COLLINS W J, RICHARDS S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559. |
[50] | 河北省区域地质矿产调查研究所. 中国区域地质志·河北志[M]. 北京: 地质出版社, 2017. |
[51] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[52] | LEE J K W, WILLIAMS I S, ELLIS D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390: 159-162. |
[53] | 高少华, 赵红格, 鱼磊, 等. 锆石U-Pb同位素定年的原理、方法及应用[J]. 江西科学, 2013, 31(3): 363-368, 408. |
[54] | CHERNIAK D J, WATSON E B. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172(1/2): 5-24. |
[55] | BELOUSOVA E, GRIFFIN W, O’REILLY S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. |
[56] | RUBATTO D, GEBAUER D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the westernAlps[M]// PAGEL M, BARBIN V, BLANC P, et al. Cathodoluminescence in Geosciences. Berlin, Heidelberg: Springer, 2000: 373-400. |
[57] | MÖLLER A, O’BRIEN P J, KENNEDY A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, London, Special Publications, 2003, 220(1): 65-81. |
[58] | 王立峰. 临城岐山湖矿产勘查实习教程[M]. 北京: 地质出版社, 2018. |
[59] | 肖玲玲, 蒋宗胜, 王国栋, 等. 赞皇前寒武纪变质杂岩区变质反应结构与变质作用P-T-t轨迹[J]. 岩石学报, 2011, 27(04): 980-1002. |
[60] | XIAO L L, WANG G D, WANG H, et al. Zircon U-Pb geochronology of the Zanhuang metamorphic complex: Reappraisal of the Palaeoproterozoic amalgamation of the Trans-North China Orogen[J]. Geological Magazine, 2013, 150(4): 756-764. |
[61] | 河北省地质矿产局第十一地质大队. 1:5万将军墓幅、西丘村幅、西黄村幅、邢台市幅区域地质调查报告[R]. 1996. |
[62] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[63] | PEARCE J A, NORRY M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. |
[64] | COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. |
[65] | WATSON E B, HARRISON T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304. |
[66] | MILLER C F, MCDOWELL S M, MAPES R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6): 529. |
[67] | CHAPPELL B W, WHITE A J R. I- and S-type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 1-26. |
[68] | CHAPPELL B W, WHITE A J R. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. |
[69] | 徐克勤, 孙鼐, 王德滋, 等. 华南两类不同成因花岗岩岩石学特征[J]. 岩矿测试, 1982, 1(2): 1-12. |
[70] | WANG Q, ZHU D C, ZHAO Z D, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. |
[71] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[72] | WAIGHT T E, MAAS R, NICHOLLS I A. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia[J]. Lithos, 2001, 56(2/3): 165-186. |
[73] | SYLVESTER P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/2/3/4): 29-44. |
[74] | 史少飞, 袁浩为, 肖渊甫, 等. 西藏青龙乡地区早白垩世侵入岩年代学和地球化学: 对班公湖—怒江洋盆闭合时限的制约[J]. 大地构造与成矿学, 2020, 44(5): 998-1011. |
[75] | 肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002. |
[76] | 张泽明, 康东艳, 丁慧霞, 等. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 2018, 43(1): 82-98. |
[77] | 于胜尧, 张建新, 宫江华, 等. 高压麻粒岩相变质作用及深熔作用: 以柴北缘都兰地区为例[J]. 岩石学报, 2013, 29(6): 2061-2072. |
[78] | ALTHERR R, SIEBEL W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece[J]. Contributions to Mineralogy and Petrology, 2002, 143(4): 397-415. |
[79] | 郑方顺, 宋国学. 铕异常在地质学中的应用[J]. 岩石学报, 2023, 39(9): 2832-2856. |
[80] | 李伦, 杨永强, 杨崇辉, 等. 赞皇地区-2.5 Ga A型花岗岩的成因及构造背景: 以黄岔岩体为例[J]. 岩石学报, 2017, 33(9): 2850-2866. |
[81] | 李伦. 华北克拉通赞皇地区-2.5 Ga A型花岗岩的成因及构造意义[D]. 北京: 中国地质大学(北京), 2018. |
[82] | LAURENT A, JANOUŠEK V, MAGNA T, et al. Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: The Žulová Pluton, Bohemian Massif[J]. Journal of Geosciences, 2014: 415-440. |
[83] | 张帆. 华北克拉通中部带赞皇杂岩新太古代—古元古代地质演化[D]. 北京: 中国地质科学院, 2019. |
[84] | HUANG W L, WYLLIE P J. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water[J]. The Journal of Geology, 1975, 83(6): 737-748. |
[85] |
席振, 马德成, 李欢, 等. 新疆东昆仑土窑洞地区新元古代早期侵入岩年代学、地球化学及其构造意义[J]. 现代地质, 2023, 37(06): 1609-1623.
DOI |
[86] | GAO P, ZHENG Y F, MAYNE M J, et al. Miocene high-temperature leucogranite magmatism in the Himalayan Orogen[J]. GSA Bulletin, 2021, 133(3/4): 679-690. |
[87] | ZHENG Y F, GAO P. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 2021, 402/403: 106232. |
[88] | XU J, XIA X P, WANG Q, et al. Pure sediment-derived granites in a subduction zone[J]. GSA Bulletin, 2022, 134(3/4): 599-615. |
[89] | CAI K D, SUN M, YUAN C, et al. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 2011, 127(1/2): 261-281. |
[90] | LYTWYN J, LOCKHART S, CASEY J, et al. Geochemistry of near-trench intrusives associated with ridge subduction, Seldova Quadrangle, southem Alaska[J]. Joumal of Geophysical Research: Solid Earth, 2000, 105: 27957-27978. |
[91] | GRIMES C B, JOHN B E, KELEMEN P B, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643. |
[92] | SCHULZ B, KLEMD R, BRÄTZ H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 697-710. |
[93] | GRIMES C B, WOODEN J L, CHEADLE M J, et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 170(5): 46. |
[94] | BARTH A P, WOODEN J L, JACOBSON C E, et al. Detrital zircon as a proxy for tracking the magmatic arc system: The California arc example[J]. Geology, 2013, 41(2): 223-226. |
[95] | 张鑫, 谢晖. 贺兰山滚钟口花岗岩岩石成因和构造背景[J]. 矿物学报, 2024, 44(2): 188-199. |
[96] | 张旗, 金惟俊, 李承东, 等. 再论花岗岩按照Sr-Yb的分类: 标志[J]. 岩石学报, 2010, 26(4): 985-1015. |
[97] | GAO L E, ZENG L S, ASIMOW P D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 2017, 45(1): 39-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||