Geoscience ›› 2023, Vol. 37 ›› Issue (06): 1435-1448.DOI: 10.19657/j.geoscience.1000-8527.2023.083
• Ore Deposits and Regional Metallogeny • Previous Articles Next Articles
ZHANG Shu1,2,3(), ZHANG Zanzan1,2, HU Zhaoqi1,2, SHI Lisheng4, ZHOU Taofa3, WU Ming'an1,2, DU Jianguo1,2
Received:
2023-05-23
Revised:
2023-07-07
Online:
2023-12-10
Published:
2024-01-24
CLC Number:
ZHANG Shu, ZHANG Zanzan, HU Zhaoqi, SHI Lisheng, ZHOU Taofa, WU Ming'an, DU Jianguo. Progress on Metallogenic Research of Granite-related Uranium Deposits from Luzong Ore District in the Middle and Lower Reaches of Yangtze River Metallogenic Belt[J]. Geoscience, 2023, 37(06): 1435-1448.
Fig.1 Simplified geological map of Southeast China, showing the distribution of major granite-related uranium deposits and gra-nitoids (modified from Zhang et al.[23])
Fig.5 Age histogram for the uranium deposits and U-bearing intrusions in A-type granite belt of the Lujiang-Zongyang ore district (age data from refs.[5,10???????-18,26,28,33??????-40,44-45])
Fig.7 Chondrite-normalized REE distribution patterns (a) and εNd(t)-(87Sr/86Sr)i diagram (b) of U-bearing intrusions in the Lujiang-Zongyang ore district
[1] | 常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991: 1-359. |
[2] | 蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051-1069. |
[3] | 巫建华, 郭国林, 郭佳磊, 等. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系[J]. 岩石学报, 2017, 33(5): 1591-1614. |
[4] | 任启江, 刘孝善, 徐兆文. 安徽庐枞中生代火山构造洼地及其成矿作用[M]. 北京: 地质出版社, 1991: 1-199. |
[5] | 周涛发, 范裕, 袁峰, 等. 庐枞盆地侵入岩的时空格架及其对成矿的制约[J]. 岩石学报, 2010, 26(9): 2694-2714. |
[6] | 王世伟, 周涛发, 袁峰, 等. 安徽沙溪斑岩型铜金矿床成岩序列及成岩成矿年代学研究[J]. 岩石学报, 2014, 30(4): 979-994. |
[7] | 聂利青, 周涛发, 范裕, 等. 长江中下游成矿带庐枞矿集区首例钨矿床成岩成矿时代及其意义[J]. 岩石学报, 2016, 32(2): 303-318. |
[8] | 张赞赞, 吴明安, 杜建国, 等. 庐枞矿集区与钨矿床有关的花岗岩的年代学及地球化学特征: 岩石成因及其对长江中下游晚白垩世成矿的启示[J]. 岩石学报, 2018, 34(1): 217-240. |
[9] | 张舒, 吴明安, 汪晶, 等. 安徽庐枞盆地与正长岩有关的成矿作用[J]. 地质学报, 2014, 88(4): 519-531. |
[10] | 闵茂中. 8411铀矿床的矿化特征[J]. 南京大学学报(自然科学版), 1982, 18(4): 928-938. |
[11] | 闵茂中. 8411矿床沥青铀矿特征及其成因意义[J]. 岩石矿物及测试, 1985, 4(3): 225-231, 286. |
[12] | 张祖还, 沈渭洲, 闵茂中. 8411铀矿床成因的稳定同位素研究[J]. 放射性地质, 1983(4): 12-17. |
[13] | 林冠英. 苏皖沿江铀成矿地质特征及找矿方向探讨[J]. 铀矿地质, 1990, 6(5): 279-286. |
[14] | 营俊龙. 8412铀矿床沥青铀矿的稀土和锶、钕同位素研究[J]. 铀矿地质, 1991, 7(3): 146-151, 188. |
[15] | 朱杰辰, 郑懋公, 营俊龙, 等. 大龙山、昆山铀矿床稳定同位素地质特征研究[J]. 铀矿地质, 1992, 8(6): 338-347. |
[16] | 陈一峰, 马昌明, 樊焕新. 庐枞地区铀成矿的区域地质背景研究[J]. 铀矿地质, 1996, 12(2): 75-82. |
[17] | 郑永飞, 傅斌, 龚冰. 安徽黄梅尖岩体热历史及其与成矿关系: 同位素证据[J]. 地质学报, 1995, 69(4): 337-348. |
[18] | 郑永飞, 魏春生, 王峥嵘, 等. 大龙山岩体冷却史及其成矿关系的同位素研究[J]. 地质科学, 1997, 32(4): 465-477. |
[19] | 田郁溟, 琚宜太, 周尚国. 我国战略矿产资源安全保障若干问题的思考[J]. 地质与勘探, 2022, 58(1): 217-228. |
[20] | 鞠建华, 张照志, 潘昭帅, 等. 我国战略性新兴产业矿产厘定与“十四五”需求分析[J]. 中国矿业, 2022, 31(9): 1-11. |
[21] | 张祖还, 章邦桐. 华南产铀花岗岩及有关铀矿床研究[M]. 北京: 原子能出版社, 1991: 1-248. |
[22] | 陈振宇, 黄国龙, 朱捌, 等. 南岭地区花岗岩型铀矿的特征及其成矿专属性[J]. 大地构造与成矿学, 2014, 38(2): 264-275. |
[23] |
ZHANG S, ZHOU T F, ZHANG Z Z, et al. In-situ hydrothermal zircon U-Pb and phlogopite 40Ar/39Ar geochronology of uranium mineralisation in Luzong ore district scientific drilling (LTZK01), Anhui Province, SE China: Constraints on the mineralisation process[J]. Ore Geology Reviews, 2021, 134: 104133.
DOI URL |
[24] | 薛怀民, 董树文, 马芳. 安徽庐枞火山岩盆地橄榄玄粗岩系的地球化学特征及其对下扬子地区晚中生代岩石圈减薄机制的约束[J]. 地质学报, 2010, 84(5): 664-681. |
[25] | 王强, 赵振华, 熊小林, 等. 底侵玄武质下地壳的熔融: 来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J]. 地球化学, 2001, 30(4): 353-362. |
[26] |
WU F Y, JI W Q, SUN D H, et al. Zircon U-Pb geochronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 2012, 150: 6-25.
DOI URL |
[27] | 邢凤鸣, 徐祥. 安徽两条A型花岗岩带[J]. 岩石学报, 1994, 10(4): 357-369. |
[28] | 薛怀民, 马芳, 曹光跃, 等. 长江中下游庐枞火山岩盆地南侧钾质侵入岩带的成因[J]. 地质学报, 2016, 90(9): 2233-2257. |
[29] | 熊欣, 徐文艺, 贾丽琼, 等. 安徽庐江砖桥科学深钻内的铀钍赋存状态研究[J]. 矿床地质, 2013, 32(6): 1211-1220. |
[30] | 邵飞. 安徽庐枞火山盆地铀成矿作用研究[J]. 铀矿地质, 2015, 31(6): 555-561. |
[31] | 刘惠华. 安徽黄梅尖地区铀成矿地质特征与控制因素研究[J]. 东华理工大学学报(自然科学版), 2014, 37(2): 150-157. |
[32] | 熊欣, 徐文艺, 杨竹森, 等. 庐枞盆地高温铀钍矿化特征、成因及其找矿意义: 来自砖桥科学深钻ZK01的证据[J]. 岩石学报, 2014, 30(4): 1017-1030. |
[33] | 范裕, 周涛发, 袁峰, 等. 安徽庐江—枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J]. 岩石学报, 2008, 24(8): 1715-1724. |
[34] | 周涛发, 王彪, 范裕, 等. 庐枞盆地与A型花岗岩有关的磁铁矿-阳起石-磷灰石矿床: 以马口铁矿床为例[J]. 岩石学报, 2012, 28(10): 3087-3098. |
[35] |
LI H, ZHANG H, LING M X, et al. Geochemical and zircon U-Pb study of the Huangmeijian A-type granite: Implications for geological evolution of the Lower Yangtze River belt[J]. International Geology Review, 2011, 53(5/6): 499-525.
DOI URL |
[36] | 周伟伟. 郯庐断裂带晚中生代富碱侵入岩年代学、岩石地球化学及其地质意义[D]. 北京: 中国地质大学(北京), 2014. |
[37] |
LI H, LING M X, LI C Y, et al. A-type granite belts of two chemical subgroups in central Eastern China: Indication of ridge subduction[J]. Lithos, 2012, 150: 26-36.
DOI URL |
[38] |
YAN J, LIU J M, LI Q Z, et al. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central Eastern China: Implications for petrogenesis and geodynamic evolution[J]. Lithos, 2015, 227: 57-76.
DOI URL |
[39] | 杜欣, 吴明安, 周涛发, 等. 安徽庐枞盆地南部A型花岗岩成因探讨[J]. 地质科学, 2018, 53(2): 678-696. |
[40] |
SONG G X, QIN K Z, LI G M, et al. Mesozoic magmatism and metallogeny in the Chizhou area, middle-Lower Yangtze valley, SE China: Constrained by petrochemistry, geochemistry and geochronology[J]. Journal of Asian Earth Sciences, 2014, 91: 137-153.
DOI URL |
[41] | 范裕, 邱宏, 周涛发, 等. 安徽庐枞盆地隐伏侵入岩的LA-ICPMS定年及其构造意义[J]. 地质学报, 2014, 88(4): 532-546. |
[42] | 贾丽琼, 徐文艺, 吕庆田, 等. 庐枞盆地砖桥地区科学深钻岩浆岩LA-MC-ICP MS锆石U-Pb年代学和岩石地球化学特征[J]. 岩石学报, 2014, 30(4): 995-1016. |
[43] | 张舒, 周涛发, 吴明安, 等. 长江中下游成矿带庐枞盆地科学深钻中侵入岩年代学及地球化学研究[J]. 地质学报, 2017, 91(7): 1483-1505. |
[44] | 杨彪, 刘琛琛, 周乾, 等. 安徽黄梅尖岩体北缘徐村铀矿床地质特征、矿床成因及成矿模式[J]. 华东地质, 2021, 42(3): 318-329. |
[45] | 张舒. 长江中下游成矿带庐枞矿集区花岗岩型铀矿床成矿作用研究[D]. 合肥: 合肥工业大学, 2019. |
[46] | DEBON F, LE FORT P. A cationic classification of common plutonic rocks and their magmatic associations: Principles, method, applications[J]. Bulletinde Minéralogie, 1988, 111(5): 493-510. |
[47] |
ZHANG L, WANG F Y, ZHOU T F, et al. The origin of uranium deposits related to the Huangmeijian A-type granite from the Lu-Zong volcanic basin, South China: Constraints from zircon U-Pb geochronology and mineral chemistry[J]. Ore Geology Reviews, 2022, 141: 104665.
DOI URL |
[48] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[49] |
EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641.
DOI URL |
[50] | 罗贤文. 长江中下游大龙山和黄梅尖花岗岩体元素地球化学、锆石U-Pb-Hf同位素研究及其地质意义[D]. 抚州: 东华理工大学, 2019. |
[51] |
DOSTAL J, SHELLNUTT J G. Origin of peralkaline granites of the Jurassic Bokan Mountain complex (southeastern Alaska) hosting rare metal mineralization[J]. International Geology Review, 2016, 58(1): 1-13.
DOI URL |
[52] |
BONNETTI C, LIU X D, MERCADIER J, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation[J]. Ore Geology Reviews, 2018, 92: 588-612.
DOI URL |
[53] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[54] | 张舒, 周涛发, 张赞赞, 等. 长江中下游成矿带黄梅尖复式岩体年代学特征:成岩成矿的启示[J]. 地球科学与环境学报, 2022, 44(2): 220-242. |
[55] |
ZHAO Z F, ZHENG Y F, WEI C S, et al. Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: A combined radiometric and oxygen isotopic study[J]. Ore Geology Reviews, 2004, 25(3/4): 221-236.
DOI URL |
[56] | 熊欣, 徐文艺, 吕庆田, 等. 安徽庐枞盆地砖桥深部钻孔内电气石对铀钍成矿流体在高温阶段的指示意义[J]. 岩石矿物学杂志, 2014, 33(2): 263-272. |
[57] |
DENG J H, YANG X Y, LI S, et al. Partial melting of subducted Paleo-Pacific plate during the Early Cretaceous: Constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt[J]. Lithos, 2016, 262: 651-667.
DOI URL |
[58] | 覃永军, 曾键年, 王思源, 等. 安徽庐枞盆地井边铜(金)矿床成矿特征及控矿地质因素探讨[J]. 矿床地质, 2010, 29(5): 915-930. |
[59] | 李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2014, 30(5): 1355-1368. |
[60] | 范裕, 周涛发, 郝麟, 等. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示[J]. 岩石学报, 2012, 28(10): 3113-3124. |
[61] | 葛宁洁, 李平, 黄宪安, 等. 安徽庐江岳山银铅锌矿的成矿物质来源及物理化学条件探讨[J]. 中国科学技术大学学报, 1989, 19(3): 365-374. |
[62] |
CUNEY M. The extreme diversity of uranium deposits[J]. Mineralium Deposita, 2009, 44(1): 3-9.
DOI URL |
[63] |
CUNEY M. Felsic magmatism and uranium deposits[J]. Bulletin de la Société Géologique de France 2014, 185: 75-92.
DOI URL |
[64] |
RUZICKA V. Vein uranium deposits[J]. Ore Geology Reviews, 1993, 8(3/4): 247-276.
DOI URL |
[65] | 张龙, 陈振宇, 汪方跃. 华南花岗岩型铀矿床主要特征与成矿作用研究进展[J]. 岩石学报, 2021, 37(9): 2657-2676. |
[66] |
WANG K X, SUN T, YU J H, et al. Provenances of the Ediacaran sedimentary rocks in the Zhuguangshan area and their implications for granitoid-related uranium mineralization in South China[J]. Ore Geology Reviews, 2020, 124: 103588.
DOI URL |
[67] | 章邦桐, 张富生, 倪琦生, 等. 安庐石英正长岩带的地质和地球化学特征及成因探讨[J]. 岩石学报, 1988, 4(3):1-14. |
[68] | 骆金诚, 石少华, 陈佑纬, 等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589-605. |
[69] | 宗克清, 陈金勇, 胡兆初, 等. 铀矿FS-LA-ICP-MS原位微区U-Pb定年[J]. 中国科学(地球科学), 2015, 45(9): 1304-1319. |
[70] | 罗涛, 赵赫, 张文, 等. 激光剥蚀电感耦合等离子体质谱非基体匹配氟碳铈矿U-Th-Pb定年[J]. 中国科学(地球科学), 2021, 51(6): 874-883. |
[71] | 吴石头, 杨岳衡, ROBERTS NICK M W, 等. 高灵敏度-单接收杯LA-SF-ICP-MS原位方解石U-Pb定年[J]. 中国科学(地球科学), 2022, 52(7): 1375-1390. |
[72] | 张红雨, 杨立明, 苏犁, 等. LA-ICP-MS独居石的U(Th)-Pb年龄精确测定方法及地质意义探究[J]. 现代地质, 2023, 37(2): 443-462. |
[73] | 徐浩, 张闯, 庞雅庆, 等. 广东长排铀矿床成矿流体特征[J]. 现代地质, 2018, 32(5): 902-912. |
[74] |
CHI G X, ASHTON K, DENG T, et al. Comparison of granite-related uranium deposits in the Beaverlodge district (Canada) and South China-A common control of mineralization by coupled shallow and deep-seated geologic processes in an extensional setting[J]. Ore Geology Reviews, 2020, 117: 103319.
DOI URL |
[75] |
HU R Z, BURNARD P G, BI X W, et al. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi Province, China: Evidence from He, Ar and C isotopes[J]. Chemical Geology, 2009, 266(1/2): 86-95.
DOI URL |
[76] |
HU R Z, BI X W, ZHOU M F, et al. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to tertiary[J]. Economic Geology, 2008, 103(3): 583-598.
DOI URL |
[77] | 李海东, 潘家永, 夏菲, 等. 相山李家岭铀矿床热液蚀变作用地球化学特征[J]. 现代地质, 2016, 30(3): 555-566. |
[78] | 杨彪, 王正其, 肖金根, 等. 安徽黄梅尖地区基性岩脉K-Ar年代学、地球化学特征及地质意义[J]. 华东地质, 2020, 41(1): 27-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||