Geoscience ›› 2022, Vol. 36 ›› Issue (02): 729-741.DOI: 10.19657/j.geoscience.1000-8527.2021.197
• Oil and Gas Exploration • Previous Articles Next Articles
BAI Xiangyu1,2(), MA Junwei3, XIA Qingping1,2, TAN Xianfeng4, LI Kaikai1,2(
)
Received:
2021-02-15
Revised:
2021-05-15
Online:
2022-04-10
Published:
2022-06-01
Contact:
LI Kaikai
CLC Number:
BAI Xiangyu, MA Junwei, XIA Qingping, TAN Xianfeng, LI Kaikai. Geochemistry of Carbonates Near the Cambrian Series 3-Furongian Boundary and Its Paleoenvironmental Constraints[J]. Geoscience, 2022, 36(02): 729-741.
层位 | 各类指标 | ||||
---|---|---|---|---|---|
Mn/Sr | Mg/Ca | FeO/MnO | Ce/La | 1000 Sr/Ca | |
崮山组 | |||||
长山组 | |||||
层位 | Ni/Co | V/(V+Ni) | T/℃ | Z | δEu |
崮山组 | |||||
长山组 |
Table 1 Parameters of the carbonate samples from the Xiaweidian section
层位 | 各类指标 | ||||
---|---|---|---|---|---|
Mn/Sr | Mg/Ca | FeO/MnO | Ce/La | 1000 Sr/Ca | |
崮山组 | |||||
长山组 | |||||
层位 | Ni/Co | V/(V+Ni) | T/℃ | Z | δEu |
崮山组 | |||||
长山组 |
[1] | BRASIER M D, SUKHOV S S. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data[J]. Canadian Journal of Earth Sciences, 1998, 35 (4): 353-373. |
[2] | SALTZMAN M R, RIPPERDAN R L, BRASIER M D, et al. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162 (3): 211-223. |
[3] | GILL B C, LYONS T W, YOUNG S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean[J]. Nature, 2011, 469 (7328): 80-83. |
[4] | ZHU M Y, ZHANG J M, LI G X, et al. Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions[J]. Géobios, 2004, 37 (2): 287-301. |
[5] | ELRICK M, RIEBOLDT S, SALTZMAN M, et al. Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event)[J]. Geology, 2011, 39 (10): 987-990. |
[6] | SCHMID S. Chemostratigraphy and palaeo-environmental characterisation of the Cambrian stratigraphy in the Amadeus Basin, Australia[J]. Chemical Geology, 2017, 451: 169-182. |
[7] | 周肖贝, 李江海, 王洪浩, 等. 寒武纪全球板块构造与古地理环境再造[J]. 海相油气地质, 2014, 19(2):1-7. |
[8] | 梅冥相, 马永生. 华北地台晚寒武世层序地层及其与北美地台海平面变化的对比[J]. 沉积与特提斯地质, 2003(4):14-26. |
[9] | 樊茹, 邓胜徽, 张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学:地球科学, 2011, 41(12):1829-1839. |
[10] | HUANG J, CHEN Y, CHU X, et al. The geochemistry of the late Cambrian carbonate in North China: the Steptoean Positive Carbon Isotope Excursion (SPICE) record suppressed in a coastal condition[J]. Geological Magazine, 2019, 156 (10): 1805-1819. |
[11] | 黄宝春, 周烑秀, 朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘, 2008, 15(3):348-359. |
[12] | 曹仁关. 华南、华北板块古生物特征与演化[J]. 云南地质, 1993(4):407-416. |
[13] | 侯方辉, 张训华, 温珍河, 等. 古生代以来中国主要块体活动古地理重建及演化[J]. 海洋地质与第四纪地质, 2014, 34(6):9-26. |
[14] | 牟传龙, 周恳恳, 陈小炜, 等. 中国岩相古地理图集[M]. 北京: 地质出版社, 2016:0-154. |
[15] | DERRY L A, KETO L S, JACOBSEN S B, et al. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland[J]. Geochimica et Cosmochimica Acta, 1989, 53 (9): 2331-2339. |
[16] | BRAND U, VEIZER J. Chemical diagenesis of a multicomponent carbonate system-1: trace elements[J]. Journal of Sedimentary Petrology, 1980, 50 (4): 1219-1236. |
[17] | KAUFMAN A J, KNOLL A H. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73 (1): 27-49. |
[18] | SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175 (1): 29-48. |
[19] | DERRY L A, BRASIER M D, CORFIELD R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the 'Cambrian explosion[J]. Earth & Planetary Science Letters, 1994, 128 (3/4): 671-681. |
[20] | LERMAN A. Lakes:Chemistry, Geology, Physics[M]. New York: Springer-Verlag, 1978:356. |
[21] | BALSAM W, JI J F, CHEN J. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility[J]. Earth and Planetary Science Letters, 2004, 223 (3): 335-348. |
[22] | WILDE P, QUINBY-HUNT M S, ERDTMANN B D. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies[J]. Sedimentary Geology, 1996, 101 (1/2):43-53. |
[23] | WRIGHT J, SCHRADER H, HOLSER W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51 (3): 631-644. |
[24] | BAI S L. Devonian Events and Biostratigraphy of South China[M]. 北京: 北京大学出版社, 1994:21-23. |
[25] | JONES B A, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111 (1/4): 111-129. |
[26] | 汪凯明, 罗顺社. 碳酸盐岩地球化学特征与沉积环境判别意义--以冀北坳陷长城系高于庄组为例[J]. 石油与天然气地质, 2009, 30(3):343-349. |
[27] | ZHAO M Y, ZHENG Y F. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones[J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531. |
[28] | LUDERS V, MOLLER P, DULSKL P. REE Fractionation in Carbonates and Fluorite[J]. Monograph Series on Mineral Deposits, 1993, 30 (9): 133-150. |
[29] | CAI C F, LI K K, LI H T, et al. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China[J]. Applied Geochemistry, 2008, 23( 8): 2226-2235. |
[30] | 赵志根, 高良敏. δEu、δCe 计算方法的标准化问题[J]. 标准化报道, 1998(5):24-26. |
[31] | KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28 (10/11): 1787-1816. |
[32] | 邵龙义. 碳酸盐岩氧、 碳同位素与古温度等的关系[J]. 中国矿业大学学报, 1994(1):39-45. |
[33] | KUMP L R, ARTHUR M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161 (1/3): 181-198. |
[34] | 肖飞, 汪建国, 吴和源, 等. 华北地区中北部寒武系层序地层格架[J]. 石油学报, 2017, 38(10):1144-1157+1167. |
[35] | 孟祥化, 葛铭. 中朝板块层序·事件·演化:天文周期的沉积响应和意义[M]. 北京: 科学出版社, 2004. |
[36] | BRASIER M D. Towards a carbon isotope stratigraphy of the Cambrian System: Potential of the Great Basin succession[J]. Geological Society London Special Publications, 1993, 70(1): 341-350. |
[37] | SCHIFFBAUER J D, HUNTLEY J W, FIKE D A, et al. Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event[J]. Science Advances, 2017, 3(3): 190-210. |
[38] | GLUMAC B, WALKER K R. A Late Cambrian positive carbon-isotope excursion in the Southern Appalachians; relation to biostratigraphy, sequence stratigraphy, environments of deposition, and diagenesis[J]. Journal of Sedimentary Research, 1998, 68 (6): 1212-1222. |
[39] | 杜圣贤, 张瑞华, 张贵丽, 等. 山东张夏-崮山地区华北寒武系标准剖面上寒武统研究新进展[J]. 山东国土资源, 2007(10):1-6. |
[40] | SALTZMAN M R, RUNNEGAR B, LOHNMAN K C. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event[J]. Geol Soc Am Bull, 1998, 110: 285-297. |
[41] | DAHL T W, BOYLE R A, CANFIELD D E, et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth & Planetary Science Letters, 2014, 401: 313-326. |
[42] | PENG S, BABCOCK L, ROBISON R, et al. Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian)[J]. Lethaia, 2010, 37 (4): 365-379. |
[43] | NOWAK H, SERVAIS T, MONNET C, et al. Phytoplankton dynamics from the Cambrian Explosion to the onset of the Great Ordovician Biodiversification Event: A review of Cambrian acritarch diversity[J]. Earth-Science Reviews, 2015, 151: 117-131. |
[44] | WOODS M A, WILBY P R, LENG M J, et al. The Furongian (late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia[J]. Journal of the Geological Society, 2011, 168 (4): 1-5. |
[1] | JIA Gaowen, SHI Jianru, YANG Yongsheng, WANG Jin, HAO Siyu, XUE Peilin, LI Jiarui. Characteristics of the Lepidodendron Fossils from the Lower Permian Taiyuan Formation in Xishan area of Taiyuan, Shanxi [J]. Geoscience, 2024, 38(01): 240-247. |
[2] | ZHANG Yifan, GAO Yuan, CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian. Carbon and Oxygen Isotope Characteristics of Late Cretaceous Lacustrine Dolomite in the Songliao Basin and their Paleoenvironmental Implications [J]. Geoscience, 2023, 37(05): 1243-1253. |
[3] | NIE Qiong, NIE Zhibao, CHEN Jian, DING Shijun, WU Saier, LI Duo, GE Runze, CHEN Ruichen. Development Characteristics and Risk Assessment of the Damogou Debris Flow in Mentougou District, Beijing [J]. Geoscience, 2023, 37(04): 1013-1022. |
[4] | HU Qinghai, WANG Xueqiu, HAN Zhixuan, CHENG Xiaomeng, WU Hui, TIAN Mi, LIU Futian, SUN Binbin, CHEN Weiming, DU Xuemiao, LIU Bin, CUI Xingtao. Geochemical Characteristics of Heavy Metals in Soils and Soil Quality Evaluation of Green Food Production in the Yongqing County of Beijing-Tianjin-Hebei Region [J]. Geoscience, 2023, 37(03): 778-789. |
[5] | JIANG Zhongfa, JIANG Mengya, CHEN Hailong, LIU Longsong, WANG Xueyong, BIAN Baoli, LI Na. Thermal and Paleoenvironment Evolution of the Fengcheng Formation of Permian in Mahu Depression, Junggar Basin [J]. Geoscience, 2022, 36(04): 1118-1130. |
[6] | HU Yan, HU Yongxing, ZHANG Xiang, YANG Tao, OU Yangjian. Geochemical Features and Geological Significance of Sandstone-type Uranium Deposit in Zhenyuan Area, Southwestern Ordos Basin [J]. Geoscience, 2020, 34(06): 1153-1165. |
[7] | YAO Ning, GONG Qingjie, WANG Xuyang, CHAO Yuede, PENG Cheng, WU Yuan, LIU Ningqiang. Bimodal Mixing Model on the Dolomite Alteration Geochemistry in the Yangshudixia Gold Deposit in Huairou, Beijing [J]. Geoscience, 2020, 34(05): 945-956. |
[8] | XUE Yushan, CUN Xiaoni, LIU Xinwei, HU Xishun. The Source of Ore-forming Material in the Longtougou Gold Metallogenic Belt of South Qinling: Evidence from Element and Sulfur Isotopic Composition [J]. Geoscience, 2020, 34(05): 1077-1091. |
[9] | JIANG Suyang, HUANG Wenhui, ZHANG Yongsheng. Geochemical Characteristics of Middle Ordovician in Western Margin of Ordos Basin and Its Implication on Paleoenvironment [J]. Geoscience, 2020, 34(03): 545-553. |
[10] | GUO Qiheng, JIN Zhenkui, ZHU Xiaoer, CHANG Rui, JIANG Mengya, WANG Jinyi. Diagenetic Evolution and Exploration Prospect of Oolitic Bank in Cambrian Zhangxia Formation at Xiaweidian Area, Beijing [J]. Geoscience, 2019, 33(04): 820-830. |
[11] | YANG Youxing, GAO Yongjin, ZHANG Junfeng, ZHOU Xingui, ZHANG Jinhu, BAI Zhongkai, HAN Miao. Depositional Models and Differences of Lacustrine Carbonate Rocks: Comparison Between Qikou Sag and Biyang Sag [J]. Geoscience, 2019, 33(04): 831-840. |
[12] | ZHANG Peng, CHEN Shijing, LIU Ziyi, HUANG Yuqi, YANG Junwei, LIU Hongyang. Geochemistry Character of Longmaxi Formation Shale Gas in Western Hunan and Hubei Areas [J]. Geoscience, 2019, 33(04): 883-889. |
[13] | XI Shengli, GANG Wenzhe, YANG Qingyu, CHEN Guo, LIU Yazhou, WANG Ning, LIU Lan. Organic Geochemistry and Sedimentary Paleoenvironment of Chang 7 Source Rocks in Yanchi-Dingbian Area, Ordos Basin [J]. Geoscience, 2019, 33(04): 890-901. |
[14] | BAI Ying, LUO Ping, LIU Wei, XU Anna, ZHAO Zhenyu, WANG Shan, GONG Jiyao. Characteristics and Origin of Oncolite from Changping Formation in the Series 2 of Cambrian in Western Beijing [J]. Geoscience, 2019, 33(03): 587-597. |
[15] | TAN Cong, YUAN Xuanjun, YU Bingsong, LIU Ce, LI Wen, Cui Jingwei. Geochemical Characteristics and Paleoclimatic Implications of the Upper Permian and Middle-Lower Triassic Strata in Southern Ordos Basin [J]. Geoscience, 2019, 33(03): 615-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||