Geoscience ›› 2021, Vol. 35 ›› Issue (04): 1078-1087.DOI: 10.19657/j.geoscience.1000-8527.2020.030
• Oil and Gas Exploration and Development • Previous Articles Next Articles
TANG Shiqi1(), LU Zhenquan2(
), CHENG Bin3, LIAO Zewen3, LIU Hui2, WANG Ting2, FAN Dongwen2, ZHANG Fugui1
Received:
2019-11-08
Revised:
2020-04-22
Online:
2021-08-10
Published:
2021-09-08
Contact:
LU Zhenquan
CLC Number:
TANG Shiqi, LU Zhenquan, CHENG Bin, LIAO Zewen, LIU Hui, WANG Ting, FAN Dongwen, ZHANG Fugui. Source Analysis of Oil and Gas Indication in Muli Depression of South Qilian Basin:A Thermal Simulation Case Study of DK-9 Core[J]. Geoscience, 2021, 35(04): 1078-1087.
样品 类型 | 样品编号 | 深度/m | 层位 | 岩性及描述 | 烃源岩 类别 | 样品 类型 | 样品编号 | 深度/m | 层位 | 岩性及描述 | 烃源岩 类别 |
---|---|---|---|---|---|---|---|---|---|---|---|
烃 源 岩 | DK9-M-008 | 163.30 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | 烃 源 岩 | DK9-M-36 | 335.70 | 中侏罗统 | 灰黑色泥岩 | Ⅱ |
DK9-M-10 | 172.10 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-39 | 348.50 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | ||
DK9-M-12 | 190.00 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-41 | 357.90 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-14 | 199.74 | 中侏罗统 | 深灰色泥岩 | Ⅰ | DK9-M-42 | 375.80 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-16 | 207.42 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-43 | 382.70 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-18 | 227.30 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-44 | 405.40 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-21 | 250.20 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-48 | 441.00 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-23 | 260.40 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-51 | 476.40 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-26 | 273.20 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-53 | 536.50 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-29 | 285.80 | 中侏罗统 | 深灰-灰黑色泥岩 | Ⅱ | DK9-M-006 | 543.50 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-31 | 294.60 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-54 | 558.70 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-33 | 303.72 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-55 | 584.00 | 上三叠统 | 灰黑色含粉砂泥岩 | Ⅲ | ||
DK9-M-34 | 326.90 | 中侏罗统 | 深灰-灰黑色泥岩 | Ⅱ | DK9-C-008 | 586.50 | 上三叠统 | 煤 | Ⅲ | ||
油气 显示 | DK9-O-01 | 160.51 | 中侏罗统 | 砂岩,褐色油浸 | 油气 显示 | DK9-O-18 | 360.93 | 中侏罗统 | 砂岩,大面积油浸 | ||
DK9-O-09 | 237.15 | 中侏罗统 | 砂岩,褐色油浸 | DK9-O-19 | 366.90 | 中侏罗统 | 砂岩,大面积油浸 |
Table 1 Sample information from borehole DK-9
样品 类型 | 样品编号 | 深度/m | 层位 | 岩性及描述 | 烃源岩 类别 | 样品 类型 | 样品编号 | 深度/m | 层位 | 岩性及描述 | 烃源岩 类别 |
---|---|---|---|---|---|---|---|---|---|---|---|
烃 源 岩 | DK9-M-008 | 163.30 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | 烃 源 岩 | DK9-M-36 | 335.70 | 中侏罗统 | 灰黑色泥岩 | Ⅱ |
DK9-M-10 | 172.10 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-39 | 348.50 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | ||
DK9-M-12 | 190.00 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-41 | 357.90 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-14 | 199.74 | 中侏罗统 | 深灰色泥岩 | Ⅰ | DK9-M-42 | 375.80 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-16 | 207.42 | 中侏罗统 | 灰黑色泥岩 | Ⅰ | DK9-M-43 | 382.70 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-18 | 227.30 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-44 | 405.40 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-21 | 250.20 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-48 | 441.00 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-23 | 260.40 | 中侏罗统 | 深灰色泥岩 | Ⅱ | DK9-M-51 | 476.40 | 中侏罗统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-26 | 273.20 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-53 | 536.50 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-29 | 285.80 | 中侏罗统 | 深灰-灰黑色泥岩 | Ⅱ | DK9-M-006 | 543.50 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-31 | 294.60 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-54 | 558.70 | 上三叠统 | 灰黑色泥岩 | Ⅲ | ||
DK9-M-33 | 303.72 | 中侏罗统 | 灰黑色泥岩 | Ⅱ | DK9-M-55 | 584.00 | 上三叠统 | 灰黑色含粉砂泥岩 | Ⅲ | ||
DK9-M-34 | 326.90 | 中侏罗统 | 深灰-灰黑色泥岩 | Ⅱ | DK9-C-008 | 586.50 | 上三叠统 | 煤 | Ⅲ | ||
油气 显示 | DK9-O-01 | 160.51 | 中侏罗统 | 砂岩,褐色油浸 | 油气 显示 | DK9-O-18 | 360.93 | 中侏罗统 | 砂岩,大面积油浸 | ||
DK9-O-09 | 237.15 | 中侏罗统 | 砂岩,褐色油浸 | DK9-O-19 | 366.90 | 中侏罗统 | 砂岩,大面积油浸 |
样品编号 | 深度/m | 层位 | 岩性 | TOC/% | RO/% |
---|---|---|---|---|---|
DK9-M-16 | 207.42 | 泥岩 | 2.96 | 0.83 | |
DK9-M-26 | 273.20 | 泥岩 | 4.23 | 0.68 | |
DK9-M-41 | 357.90 | 中侏罗统 | 泥岩 | 18.15 | 0.62 |
DK9-M-44 | 405.40 | 泥岩 | 0.45 | 0.66 | |
DK9-M-51 | 476.40 | 泥岩 | 1.50 | 0.62 | |
DK9-M-53 | 536.50 | 泥岩 | 3.33 | 0.61 | |
DK9-M-006 | 543.50 | 泥岩 | 2.16 | 0.64 | |
DK9-M-54 | 558.70 | 上三叠统 | 泥岩 | 0.85 | 0.68 |
DK9-M-55 | 584.00 | 泥岩 | 2.89 | 0.69 | |
DK9-C-008 | 586.50 | 煤 | 42.21 | 0.65 |
Table 2 Characteristics of the samples for the thermalsimulation
样品编号 | 深度/m | 层位 | 岩性 | TOC/% | RO/% |
---|---|---|---|---|---|
DK9-M-16 | 207.42 | 泥岩 | 2.96 | 0.83 | |
DK9-M-26 | 273.20 | 泥岩 | 4.23 | 0.68 | |
DK9-M-41 | 357.90 | 中侏罗统 | 泥岩 | 18.15 | 0.62 |
DK9-M-44 | 405.40 | 泥岩 | 0.45 | 0.66 | |
DK9-M-51 | 476.40 | 泥岩 | 1.50 | 0.62 | |
DK9-M-53 | 536.50 | 泥岩 | 3.33 | 0.61 | |
DK9-M-006 | 543.50 | 泥岩 | 2.16 | 0.64 | |
DK9-M-54 | 558.70 | 上三叠统 | 泥岩 | 0.85 | 0.68 |
DK9-M-55 | 584.00 | 泥岩 | 2.89 | 0.69 | |
DK9-C-008 | 586.50 | 煤 | 42.21 | 0.65 |
样号 | Pr/Ph | Ts/ (Ts+Tm) | C30RH/ C29(H+Ts) | C29(H+Ts)/ C30H | C27D/ C27-29-St | C27αααR/ C27-St | C28αααR/ C28-St | C29αααR/ C29-St | C29-S/ (S+R) | C29-ββ/ (αα+ββ) |
---|---|---|---|---|---|---|---|---|---|---|
DK9-O-01 | 1.42 | 0.52 | 0.51 | 0.78 | 0.32 | 0.10 | 0.06 | 0.13 | 0.60 | 0.63 |
DK9-O-09 | 0.92 | 0.44 | 0.09 | 0.46 | 0.05 | 0.29 | 0.30 | 0.31 | 0.45 | 0.40 |
DK9-O-18 | 1.06 | 0.42 | 0.08 | 0.58 | 0.09 | 0.28 | 0.29 | 0.28 | 0.50 | 0.41 |
DK9-O-19 | 1.11 | 0.41 | 0.07 | 0.60 | 0.09 | 0.27 | 0.30 | 0.29 | 0.49 | 0.40 |
Table 3 Major biomarker compound parameters of oil and gas indications from borehole DK-9
样号 | Pr/Ph | Ts/ (Ts+Tm) | C30RH/ C29(H+Ts) | C29(H+Ts)/ C30H | C27D/ C27-29-St | C27αααR/ C27-St | C28αααR/ C28-St | C29αααR/ C29-St | C29-S/ (S+R) | C29-ββ/ (αα+ββ) |
---|---|---|---|---|---|---|---|---|---|---|
DK9-O-01 | 1.42 | 0.52 | 0.51 | 0.78 | 0.32 | 0.10 | 0.06 | 0.13 | 0.60 | 0.63 |
DK9-O-09 | 0.92 | 0.44 | 0.09 | 0.46 | 0.05 | 0.29 | 0.30 | 0.31 | 0.45 | 0.40 |
DK9-O-18 | 1.06 | 0.42 | 0.08 | 0.58 | 0.09 | 0.28 | 0.29 | 0.28 | 0.50 | 0.41 |
DK9-O-19 | 1.11 | 0.41 | 0.07 | 0.60 | 0.09 | 0.27 | 0.30 | 0.29 | 0.49 | 0.40 |
Fig.6 Comparison between biomarker compound characteristics of Middle Jurassic samples and oil/gas indications of borehole DK-9 under different temperatures
Fig.8 Comparison between biomarker compound characteristics of the Upper Triassic samples and oil/gas indications the borehole DK-9 under different temperatures
[1] | 祝有海, 张永勤, 文怀军. 祁连山冻土区天然气水合物科学钻探工程概况[J]. 地质通报, 2011, 30(12):1816-1822. |
[2] | 文怀军, 卢振权, 李永红, 等. 青海木里三露天井田天然气水合物调查研究新进展[J]. 现代地质, 2015, 29(5):983-994. |
[3] |
LU Z Q, ZHAI G Y, ZUO Y H, et al. The geological process for gas hydrate formation in the Qilian Mountain Permafrost[J]. Petroleum Science and Technology, 2019, 37(13):1566-1581.
DOI URL |
[4] |
LU Z Q, ZHAI G Y, ZHU Y H, et al. New discovery of the permafrost gas hydrate accumulation in Qilian Mountain, China[J]. China Geology, 2018, 1(2):306-307.
DOI URL |
[5] | 卢振权, 祝有海, 刘晖, 等. 祁连山冻土区含天然气水合物层段的油气显示现象[J]. 现代地质, 2013, 27(1):231-238. |
[6] | 卢振权, 唐世琪, 王伟超, 等. 青海木里三露天冻土天然气水合物气源性质研究[J]. 现代地质, 2015, 29(5):995-1001. |
[7] | 王伟超, 卢振权, 李永红, 等. 青海木里三露天天然气水合物分布与储层特征研究[J]. 现代地质, 2015, 29(5):1035-1046. |
[8] | 李永红, 王伟超, 卢振权, 等. 青海木里三露天地区天然气水合物资源量初步评价[J]. 现代地质, 2015, 29(5):1251-1260. |
[9] | 唐世琪, 卢振权, 王伟超, 等. 青海木里三露天冻土区天然气水合物钻孔岩心顶空气组成及指示意义[J]. 现代地质, 2015, 29(5):1201-1213. |
[10] | 唐世琪, 卢振权, 饶竹, 等. 祁连山冻土区天然气水合物岩心顶空气组分与同位素的指示意义——以DK-9孔为例[J]. 地质通报, 2015, 34(5):961-971. |
[11] | 卢振权, 翟刚毅, 文怀军, 等. 青海木里三露天冻土区天然气水合物形成与分布地质控制因素[J]. 现代地质, 2015, 29(5), 1002-1013. |
[12] | 卢振权, 李永红, 王伟超, 等. 青海木里三露天冻土天然气水合物成藏模式研究[J]. 现代地质, 2015, 29(5):1014-1023. |
[13] | 吴初国, 何贤杰, 盛昌明, 等. 能源安全综合评价方法探讨[J]. 自然资源学报, 2011, 26(6):964-970. |
[14] | 符俊辉, 周立发. 南祁连盆地石炭—侏罗纪地层区划及石油地质特征[J]. 西北地质科学, 1998, 19(2):47-54. |
[15] | 符俊辉, 周立发. 南祁连盆地三叠纪地层及石油地质特征[J]. 西北地质科学, 2000, 21(2):64-72. |
[16] | 郝爱胜, 李剑, 王东良, 等. 南祁连盆地石炭系与上三叠统尕勒得寺组烃源岩地球化学特征[J]. 非常规油气, 2016, 3(1):7-13. |
[17] | 唐世琪, 卢振权, 王伟超, 等. 青海木里三露天天然气水合物气源岩有机地球化学特征[J]. 现代地质, 2015, 29(5):1205-1213. |
[18] | 任拥军, 纪友亮. 南祁连盆地石炭系可能烃源岩的甾萜烷地球化学特征及意义[J]. 石油实验地质, 2000, 22(4):341-345. |
[19] | 谢其锋, 周立发, 蔡元峰, 等. 南祁连盆地二叠系海相烃源岩地球化学特征及其对物源属性和古环境的约束[J]. 地质学报, 2015, 89(7):1288-1301. |
[20] | 谢其锋, 周立发, 马国福, 等. 南祁连盆地三叠系烃源岩有机地球化学特征[J]. 北京大学学报(自然科学版), 2011, 47(6):1034-1040. |
[21] | 程青松, 龚建明, 张敏, 等. 祁连山冻土区烃源岩地球化学特征及天然气水合物气源分析[J]. 海洋地质与第四纪地质, 2016, 36(5):139-147. |
[22] | 张家政, 祝有海, 黄霞, 等. 南祁连盆地木里冻土区天然气水合物烃源岩特征及评价[J]. 地质通报, 2017, 36(4):634-643. |
[23] | 龚文强, 张永生, 宋天锐, 等. 南祁连盆地木里坳陷侏罗系烃源岩生烃潜力评价[J]. 石油天然气学报, 2013, 35(3):177-179. |
[24] |
LU Z Q, XUE X H, LIAO Z W, et al. Source rocks for gases from gas hydrate and their burial depth in the Qilian Mountain Permafrost, Qinghai: Results from thermal stimulation[J]. Energy & Fuels: 2013, 27(12):7233-7244.
DOI URL |
[25] | 翟刚毅, 卢振权, 卢海龙, 等. 祁连山冻土区天然气水合物成矿系统[J]. 矿物岩石, 2014, 34(4):79-92. |
[26] | 薛小花, 卢振权, 廖泽文, 等. 祁连山冻土区含天然气水合物层段岩心热模拟实验研究[J]. 现代地质, 2013, 27(2):413-423. |
[27] |
CHENG B, XU J B, LU Z Q, et al. Hydrocarbon source for oil and gas indication associated with gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Northwest China[J]. Marine and Petroleum Geology, 2018, 89(1):202-215.
DOI URL |
[28] | 卢振权, 祝有海, 张永勤, 等. 青海省祁连山冻土区天然气水合物基本地质特征[J]. 矿床地质, 2010, 29(1):182-191. |
[29] | 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. |
[30] | 张雪亭, 杨生德. 青海省板块构造研究——1:100 万青海省大地构造图说明书[M]. 北京: 地质出版社, 2007. |
[31] | 青海省地质矿产局. 青海省岩石地层[M]. 武汉: 中国地质大学出版社, 1997. |
[32] |
MOLDOWAN J M, FAGO F J, CARLSON R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1991, 55:3333-3353.
DOI URL |
[33] |
TELNAES N, ISAKSEN G H, FARRIMOND P. Unusual triterpane distributions in lacustrine oils[J]. Organic Geochemistry, 1992, 18(6):785-789.
DOI URL |
[34] | PETERS K E, MOLDOWAN J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. New Jersey: Prentice Hall, Englewood Cliffs, 1993. |
[35] | PHILIP R P, GILBERT T D. Biomarker distribution in oils predominantly derived from terrigenous source material [M]//LEYTHAEUSER D, RULLKOTTER J. Advances in Organic Geochemistry. Oxford: Pergamon Press, 1986:73-84. |
[36] |
OBERMAJER M, OSADETZ K G, FOWLER M G, et al. Delineating compositional variabilities among crude oils from central Montana, USA,using light hydrocarbon and biomarker characteristics[J]. Organic Geochemistry, 2002, 33:1343-1359.
DOI URL |
[37] | 张文正, 杨华, 侯林慧, 等. 鄂尔多斯盆地延长组不同烃源岩17α(H)-重排藿烷的分布及其地质意义[J]. 中国科学:地球科学, 2009, 52(7):965-974. |
[38] |
DE LEEUW J M, COX H C, VAN GRASS G, et al. Limited double bond isomerisation and selective hydrogenation of steranes during early diagenesis[J]. Geochimica et Cosmochimica Acta, 1989, 53:903-909.
DOI URL |
[39] |
MOLDOWAN J M, SUNDARARAMAN P, SCHOELL M. Sensitivity of biomarker properties to depositional environment and/or source input in the lower Toarcian of S.W. Germany[J]. Organic Geochemistry, 1986, 10:915-926.
DOI URL |
[40] | BRINCAT D, ABBOTT G D. Some aspects of the molecular biogeochemistry of laminated and massive rocks from the Naples Beach Section (Santa Barbara-Ventura Basin) [M]//ISAACS C M, RULLKOTTER J. The Monterey Formation: From Rocks to Molecules. Columbia: Columbia University Press, 2001:140-149. |
[41] | 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004. |
[1] | ZHANG Shu, ZHANG Zanzan, HU Zhaoqi, SHI Lisheng, ZHOU Taofa, WU Ming'an, DU Jianguo. Progress on Metallogenic Research of Granite-related Uranium Deposits from Luzong Ore District in the Middle and Lower Reaches of Yangtze River Metallogenic Belt [J]. Geoscience, 2023, 37(06): 1435-1448. |
[2] | KE Xing, ZHAO Qingfang, WU Piao, YANG Chuansheng, LIAO Jing, GONG Jianming. Characteristics and Evaluation of Cretaceous Source Rocks in the Northeastern Jiaolai Basin [J]. Geoscience, 2023, 37(05): 1358-1368. |
[3] | YANG Xiongbing, WANG Hongyu, SU Yushan, GUAN Chao. Source Rock Characteristics and Its Accumulation Contribution in the Lower Congo Basin, South Atlantic [J]. Geoscience, 2023, 37(05): 1369-1384. |
[4] | QIAN Xinyu, BIAN Xiaowei, ZHANG Yafeng, WANG Yingwei, YANG Yunjun, YOU Jun. Influence of Geological Formation on the Ecological Spatial Pattern of Soil and Vegetation in the Danjiang River Source Region [J]. Geoscience, 2023, 37(04): 903-913. |
[5] | YAN Baizhong, SUN Jian, CHEN Jiaqi, SUN Fengbo, LI Xiaomeng, FU Qingjie. Suitability Zoning for Groundwater Source Heat Pump Based on Adaptive BPNN-GIS Method [J]. Geoscience, 2023, 37(04): 963-971. |
[6] | DUGUER Weiwei, SHI Haitao, XING Hao, LOU Xuecong, HU Hongli, BULONG Bate. Source Analysis and Spatial Distribution of Heavy Metals in Soil from Typical Open-pit Coal Mines in the Gobi Desert, Xinjiang [J]. Geoscience, 2023, 37(03): 790-800. |
[7] | HU Qixuan, TAN Handong, YU Cui. 3D Inversion of Time-lapse Controlled Source Audio-frequency Magnetotellurics [J]. Geoscience, 2023, 37(01): 90-98. |
[8] | CAO Linjie, ZHANG Yunzhou, LI Silong, WANG Zhihong, ZHANG Yao, ZHANG Han. Geochemical Characteristic and Ore-forming Material Sources of Daping-Jinling Barite Deposit in Northern of Daba Mountain [J]. Geoscience, 2022, 36(06): 1497-1502. |
[9] | LI Wenxia, ZHAO Zhidan, WANG Xiaoli, YAN Rong, LU Yuanfa. Re-Os Isotopic Characteristics and Geological Significance of Mafic Rocks from the Xigaze Ophiolite,Tibet [J]. Geoscience, 2022, 36(06): 1503-1512. |
[10] | GAN Jun, JI Hongquan, LIANG Gang, HE Xiaohu, XIONG Xiaofeng, LI Xing. Gas Accumulation Model of Mesozoic Buried Hill in Qiongdongnan Basin [J]. Geoscience, 2022, 36(05): 1242-1253. |
[11] | LI Erting, MA Wanyun, LI Ji, MA Xinxing, PAN Changchun, ZENG Lifei, WANG Ming. Thermal Simulation Experiment for Hydrocarbon Generation: A Case Study of Jurassic Coal from the Southern Margin of Junggar Basin [J]. Geoscience, 2022, 36(05): 1313-1323. |
[12] | LI Jinlong, LI Qian, CAI Yidong, CHEN Wei, CHEN Zhizhu, WANG Jian, XUE Xiaohui. Geological Conditions and Resource Potential of Coalbed Methane Reservoirs in Laochang Mining Area, Yunnan Province [J]. Geoscience, 2022, 36(05): 1351-1359. |
[13] | ZHANG Yingzhao, HU Senqing, LIU Jinshui, JIANG Yiming, CHEN Zhongyun, QIN Jun, DIAO Hui, WANG Chao. Geochemical Characteristics and Genesis of Oil and Gas in the Lishuixi Sag, East China Sea Shelf Basin [J]. Geoscience, 2022, 36(05): 1382-1390. |
[14] | ZHENG Qinghua, LIU Xingjun, ZHANG Xiaolong, WANG Hongjun, LIAO Yongle, AN Erliang, LIU Tao, ZHANG Jianna, ZUO Qin. Review of the High Natural Gamma Sandstones Associated With Source Rocks in the Chang 73 Submember of the Yanchang Formation, Ordos Basin [J]. Geoscience, 2022, 36(04): 1087-1094. |
[15] | FAN Yan, WANG Xulong, XIANG Caifu, WANG Qianjun, LIU Jia, LIAO Jiande, XU Huaimin. Enrichment Patterns and Main Controlling Factors of Source Rocks in the Permian Pingdiquan Formation, Eastern Junggar Basin [J]. Geoscience, 2022, 36(04): 1105-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||