Geoscience ›› 2023, Vol. 37 ›› Issue (02): 296-306.DOI: 10.19657/j.geoscience.1000-8527.2022.035
• Structural Geology • Previous Articles Next Articles
TIAN Anqi1,2(), CHEN Shi1,2(
), YU Yixin1,2, XIU Jinlei3, JIN Feng1,2
Received:
2022-04-02
Revised:
2022-06-20
Online:
2023-04-10
Published:
2023-05-23
Contact:
CHEN Shi
CLC Number:
TIAN Anqi, CHEN Shi, YU Yixin, XIU Jinlei, JIN Feng. Layered Deformation Characteristics, Formation Mechanism of Strike-slip Faults on the Western Margin of Mosuowan Uplift,Junggar Basin[J]. Geoscience, 2023, 37(02): 296-306.
Fig.3 Fault system diagram for the top Upper Permian (a), bottom Jurassic Badaowan Formation (b) and bottom Sangonghe Formation (c) at Zhengshacun, Junggar Basin
Fig.4 Plane characteristics of strike-slip faults on the top Upper Permian (a), bottom Jurassic Badaowan Formation (b) and bottom Sangonghe Formation (c) at Zhengshacun, Junggar Basin
[1] | 焦方正, 杨雨, 冉崎, 等. 四川盆地中部地区走滑断层的分布与天然气勘探[J]. 天然气工业, 2021, 41(8): 92-101. |
[2] |
BACQUES G. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat INSAR[J]. Scientific Reports, 2018, 8(1): 8023.
DOI |
[3] | BELKHIRIA W, INOUBLI M H. Comment on “Deformation styles related to intraplate strike-slip fault systems of the Saharan-Tunisian Southern Atlas (North Africa): New kinematic models”by Soumaya et al[J]. Journal of Structural Geology, 2021, 10(4): 353-357. |
[4] |
HUANG L, LIU C Y. Evolutionary characteristics of the sags to the east of Tan-Lu Fault Zone, Bohai Bay Basin (China): Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Asian Earth Sciences, 2014, 79(8): 275-287.
DOI URL |
[5] |
范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018, 45(2): 190-199.
DOI |
[6] | 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. |
[7] | 黄雷, 刘池洋, 王飞龙, 等. 渤海海域辽西凹陷北部走滑断裂特征及地质意义[J]. 西北大学学报(自然科学版), 2019, 49(2): 258-267. |
[8] |
马德波, 汪泽成, 段书府, 等. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义[J]. 石油勘探与开发, 2018, 45(5): 795-805.
DOI |
[9] | 张越迁, 汪新, 刘继山, 等. 准噶尔盆地西北缘乌夏走滑构造及油气勘探意义[J]. 新疆石油地质, 2011, 32(5): 447-450. |
[10] | 任新成. 准噶尔盆地永进油田西山窑组油藏成岩演化及成藏史[J]. 新疆石油地质, 2021, 42(1): 21-28. |
[11] | 姜大朋, 代一丁, 刘丽华, 等. 断裂输导油气的机制及侧向分流控制因素探讨[J]. 现代地质, 2014, 28(5): 1023-1031. |
[12] | 裴立新, 刚文哲, 高岗, 等. 断裂对油气的控制作用——以南堡凹陷为例[J]. 现代地质, 2015, 29(4): 930-936. |
[13] | 钱海涛. 准噶尔盆地盆1井西凹陷斜坡区油气地质特征及勘探潜力[J]. 天然气地球科学, 2021, 32(4): 551-561. |
[14] |
朱明, 袁波, 梁则亮, 等. 准噶尔盆地周缘断裂属性与演化[J]. 石油学报, 2021, 42(9): 1163-1173.
DOI |
[15] | 商丰凯. 叠合盆地凸起区多期复杂断裂特征及形成机制——以准噶尔盆地车排子凸起为例[J]. 断块油气田, 2020, 27(3): 278-283. |
[16] | 王小军. 准噶尔盆地复合含油气系统与复式聚集成藏[J]. 中国石油勘探, 2021, 26(4): 29-43. |
[17] |
胡素云. 准噶尔盆地腹部断裂活动对油气聚集的控制作用[J]. 石油学报, 2006, 27(1): 1-7.
DOI |
[18] | 王彦君. 准噶尔盆地多期构造控藏作用及深层油气勘探[D]. 南京: 南京大学, 2020. |
[19] | 陈石, 郭召杰, 漆家福, 等. 准噶尔盆地西北缘三期走滑构造及其油气意义[J]. 石油与天然气地质, 2016, 37(3): 322-331. |
[20] | 张军生, 胡晨林, 田继军, 等. 准噶尔盆地达巴松凸起沉积模式及油气成藏条件[J]. 断块油气田, 2021, 28(5): 631-635. |
[21] | 齐雪峰. 准噶尔盆地腹部深层构造特征与油气前景[J]. 新疆石油地质, 2010, 31(2): 111-114. |
[22] | 钱少飞. 准噶尔盆地莫西庄地区构造格局与演化史[D]. 北京: 中国石油大学(北京), 2019. |
[23] | 何登发. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861. |
[24] |
WINDLEY B F. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131.
DOI URL |
[25] | AVOUAC J P, TAPPONNIER P, BAI M, et al. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(4): 6755-6804. |
[26] |
WOODCOCK N, FISCHER M. Strike-slip duplexes[J]. Journal of Structural Geology, 1986, 8: 725-735.
DOI URL |
[27] | 朱明, 汪新, 肖立新, 等. 准噶尔盆地南缘构造特征与演化[J]. 新疆石油地质, 2020, 41(1): 9-17. |
[28] | 黄诚. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别——以塔里木盆地顺北地区为例[J]. 石油实验地质, 2019, 41(3): 380-388. |
[29] | 蔡忠贤. 准噶尔盆地的类型和构造演化[J]. 地学前缘, 2000, 7(4): 432-440. |
[30] | 梁媛媛. 准噶尔盆地西北缘走滑断裂构造特征及其控藏作用研究[D]. 北京: 中国石油大学(北京), 2020. |
[31] | 刘磊, 张光亚, 侯连华, 等. 准噶尔盆地西北缘红山嘴及邻区构造变换带与油气成藏关系[J]. 现代地质, 2009, 23(4): 607-615. |
[32] | 汪新伟, 汪新文, 马永生. 新疆博格达山的构造演化及其与油气的关系[J]. 现代地质, 2007, 21(1): 116-124. |
[33] |
VAN DER VOO R, LEVASHOVA N M, SKRINNIK L I, et al. Late orogenic, large-scale rotations in the Tian Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan[J]. Tectonophysics, 2006, 426(3/4): 335-360.
DOI URL |
[34] |
WANG B, CHEN Y, ZHANG S, et al. Primary Carboniferous and Permian paleomagnetic results from the Yili block(NW China)and their implications on the geodynamic evolution of Chinese Tianshan belt[J]. Earth and Planetary Science Letters, 2007, 263(3/4): 288-308.
DOI URL |
[1] | LU Fang, GAO Mingxing, ZHOU Shuxian, WANG Shun. Fluvial Geomorphology of the Eastern Altyn Tagh and Its Tectonic Activity Implications [J]. Geoscience, 2023, 37(05): 1100-1109. |
[2] | SONG Qing, SUN Panke, XIANG Jinyuan, TIAN Fajin, LÜ Fengqing, JIA Langbo, JIANG Shiyi, SHEN Yuhao, XU Huaimin, ZHANG Lin, HE Taihong, FANG Xiangyang. Structural Characteristics of Strike-Slip Fault and Its Control on Fluid Distribution in the East Ⅱ Block of the Sulige Gas Field, Ordos Basin [J]. Geoscience, 2023, 37(05): 1110-1122. |
[3] | WANG Qinghua. Differential Deformation and Evolution Characteristics of the No.17 Strike-slip Fault Zone in the Tarim Basin [J]. Geoscience, 2023, 37(05): 1136-1145. |
[4] | NI Minjie, ZHU Hexuan, HE Wenjun, YANG Sen, ZOU Yang, ZHANG Yuanyuan. Depositional Environment and Sedimentary Model of the Fengcheng Formation in Mahu sag, Junggar Basin [J]. Geoscience, 2023, 37(05): 1194-1207. |
[5] | YU Jingwei, DING Wei, ZHANG Xin, QI Liqi, HUANG Shuya, ZHANG Zhiyue, ZHANG Yile. Genesis of Carbonate Cement and Influence on Reservoir Quality of the Badaowan Formation in AH5 Well Block of Junggar Basin [J]. Geoscience, 2023, 37(05): 1336-1344. |
[6] | ZHOU Hongfu, FANG Tian, XIA Chenhao, RAN Tao, XU Ruge, ZHANG Jinghua. Reactivation Characteristics and Mechanism of Engineering Disturbed Dumi Landslide in Western Sichuan Province, China [J]. Geoscience, 2023, 37(04): 1044-1053. |
[7] | ZUO Liang, NENG Yuan, HUANG Shaoyin, LUO Caiming, CHEN Shi, ZHU Tie, WANG Chuan, LU Chengmei. Deformation Characteristics of Ultra-deep Glide Faults in the Halahatang Area and Their Petroleum Geological Significance [J]. Geoscience, 2023, 37(02): 270-282. |
[8] | ZHANG Yintao, CHEN Shi, LIU Qiang, FENG Guang, XIE Zhou, LIANG Xinxin, LI Ting, SONG Xingguo, KANG Pengfei, PENG Zijun. Development Characteristics and Evolution Model of FⅠ19 Fault in Fuman Oilfield, Tarim Basin [J]. Geoscience, 2023, 37(02): 283-295. |
[9] | TANG Xu, YU Yixin, YU Wenquan, TANG Haiqing, WANG Xiaoyan. Characteristics of Fault System and Its Influence on Hydrocarbon Accumulation in Gaoyou Sag, Subei Basin [J]. Geoscience, 2023, 37(02): 316-327. |
[10] | ZHANG Hanjing, LI Sumei, GAO Yongjin, ZHANG Lin, KE Changwei. Organic Geochemical Characteristics of Source Rocks of Permian Lucaogou Formation in Southeastern of Junggar Basin [J]. Geoscience, 2022, 36(06): 1538-1550. |
[11] | LI Erting, MA Wanyun, LI Ji, MA Xinxing, PAN Changchun, ZENG Lifei, WANG Ming. Thermal Simulation Experiment for Hydrocarbon Generation: A Case Study of Jurassic Coal from the Southern Margin of Junggar Basin [J]. Geoscience, 2022, 36(05): 1313-1323. |
[12] | PENG Zijun, FENG Lei, LUO Caiming, CHEN Shi, SONG Xingguo, LIANG Xinxin, ZHOU Xiaorong. Physical Simulation Experiment on Stratification Strike-slip Fault Deformation Mechanism in the Tazhong Uplift [J]. Geoscience, 2022, 36(04): 1022-1034. |
[13] | HAN Hongwei, LIU Zhen, MA Xinruo, LI Hongmei, HE Yangyang, XU Zeyang. Distribution Prediction of High Overpressure in Jurassic Moxizhuang-Yongjin Area, Central Junggar Basin [J]. Geoscience, 2022, 36(04): 1074-1086. |
[14] | FAN Yan, WANG Xulong, XIANG Caifu, WANG Qianjun, LIU Jia, LIAO Jiande, XU Huaimin. Enrichment Patterns and Main Controlling Factors of Source Rocks in the Permian Pingdiquan Formation, Eastern Junggar Basin [J]. Geoscience, 2022, 36(04): 1105-1117. |
[15] | SHAO Longfei, YU Fusheng, WANG Dandan, LI Chao. Geochronology, Geochemistry,and Tectonic Significance of Carboniferous Andesite in the Zhongguai Uplift, Northwestern Margin of the Junggar Basin [J]. Geoscience, 2022, 36(03): 812-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||