Geoscience ›› 2021, Vol. 35 ›› Issue (01): 92-102.DOI: 10.19657/j.geoscience.1000-8527.2021.014
Previous Articles Next Articles
ZHOU Jie1, DING Mingtao1(), HUANG Tao1, CHEN Ningsheng2
Received:
2020-10-20
Revised:
2020-12-10
Online:
2021-02-12
Published:
2021-03-12
Contact:
DING Mingtao
CLC Number:
ZHOU Jie, DING Mingtao, HUANG Tao, CHEN Ningsheng. Optimization of Disaster-reduction Route Selection in Geological Disaster-Prone Region Along the Sichuan-Tibet Railway Based on Virtual Reality: A Case Study of Luolong Station[J]. Geoscience, 2021, 35(01): 92-102.
沟道名称 | 流域面积/km2 | 主沟长度/km | 平均坡降/‰ | 最大高程/m | 最小高程/m | 最大高差/m |
---|---|---|---|---|---|---|
察达1号 | 2.72 | 2.94 | 340.25 | 5 247.00 | 3 719.00 | 1 528.00 |
Table 1 Watershed characteristic parameters of Chada No.1 debris flow gully
沟道名称 | 流域面积/km2 | 主沟长度/km | 平均坡降/‰ | 最大高程/m | 最小高程/m | 最大高差/m |
---|---|---|---|---|---|---|
察达1号 | 2.72 | 2.94 | 340.25 | 5 247.00 | 3 719.00 | 1 528.00 |
[1] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015,60(32):3067-3077. |
[2] | 宋章, 张广泽, 蒋良文, 等. 川藏铁路主要地质灾害特征及地质选线探析[J]. 铁道标准设计, 2016,60(1):14-19. |
[3] | 李孝攀, 李远富, 周先虎, 等. 川藏铁路康定至昌都段地质灾害区域危险性评价[J]. 铁道标准设计, 2017,61(6):58-62. |
[4] | 杨德宏. 川藏铁路昌都至林芝段主要工程地质问题分析[J]. 铁道标准设计, 2019,63(9):16-22,27. |
[5] | 西藏自治区地质矿产局. 西藏自治区区域地质志[M]. 北京: 地质出版社, 1993. |
[6] | 郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 2017,31(5):877-889. |
[7] | 李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017,31(5):911-929. |
[8] | 朱颖. 复杂艰险山区铁路减灾选线技术框架[M] //张展. 川藏铁路建设面临的挑战与对策——2016学术交流会论文集. 北京: 人民交通出版社, 2017: 272-276. |
[9] | 朱颖, 魏永幸. 复杂艰险山区铁路减灾选线[J]. 高速铁路技术, 2018,9(6):1-4. |
[10] | 魏永幸, 岳志勤, 李光辉. 复杂艰险山区地质灾害识别与铁路减灾选线[J]. 高速铁路技术, 2019,10(3):1-5,24. |
[11] | 魏永幸, 陈明浩, 张广泽, 等. 面向铁路减灾选线的复杂艰险山区地质灾害广域高效识别[J]. 高速铁路技术, 2020,11(1):1-6. |
[12] | 邓域才. 铁路选线自动化述评[J]. 铁道建筑, 1981,21(2):1-6. |
[13] | WETHAL H. Use of digital maps in road design[J]. Kart og Plan, 1988,48(2):125-127. |
[14] | 李桂芳. 基于三维空间场景的铁路选线技术研究[J]. 铁道标准设计, 2012,56(10):19-21,72. |
[15] | 朱颖, 蒲浩, 刘江涛, 等. 基于数字地球的铁路三维空间选线技术研究[J]. 铁道工程学报, 2009,26(7):33-37. |
[16] | 易思蓉, 聂良涛. 基于虚拟地理环境的铁路数字化选线设计系统[J]. 西南交通大学学报, 2016,51(2):373-380. |
[17] | 赵沁平. 虚拟现实综述[J]. 中国科学(F辑:信息科学), 2009,39(1):2-46. |
[18] | 朱正强, 吴介一, 孔竞飞, 等. 基于VRML-Java的虚拟现实技术在可视化装配中的应用[J]. 东南大学学报(自然科学版), 2002,32(1):24-28. |
[19] | 袁心平, 唐秋华. 基于非沉浸式虚拟现实技术的设计方法探析[J]. 湖北工业大学学报, 2006,21(3):154-156. |
[20] | KAUFMANN H, SCHMALSTIEG D, WAGNER M. Construct3D: A virtual reality application for mathematics and geometry education[J]. Education and Information Technologies, 2000,5(4) : 263-276. |
[21] | WANG Li, WANG Lizhen. Design and implementation of three-dimensional virtual tour guide training system based on Unity3D[M] //IEEE.Information System and Computer Engineering (CISCE). Haikou: CISCE, 2019: 203-205. |
[22] | 方沁. 基于Unity和3dmax的虚拟实验室三维建模设计与实现[D]. 北京: 北京邮电大学, 2015. |
[23] | BAYARRI S, FERNANDEZ M, PEREZ M. Virtual reality for driving simulation[J]. Communications of the ACM, 1996,39(5) : 72-76. |
[24] | 杜红星, 周安荔. 三维可视化铁路选线辅助设计系统研究[J]. 铁道工程学报, 2004,21(1):48-51. |
[25] | 杨柏林. 基于ArcGIS和RPSO的铁(公)路三维空间智能选线系统的研发[D]. 长沙: 中南大学, 2012. |
[26] | 刘威, 胡光常, 唐文建, 等. 铁路智能选线系统开发与应用[J]. 高速铁路技术, 2016,7(2):54-57. |
[27] | 张广泽, 蒋良文, 宋章, 等. 横断山区川藏线山地灾害和地质选线原则研究[J]. 铁道工程学报, 2016,33(2):21-24,33. |
[28] | 丁明涛, 田述军. 滑坡泥石流风险评价及其应用[M]. 北京: 科学出版社, 2013. |
[29] | 胡凯衡, 丁明涛. 滑坡泥石流风险评估框架体系[J]. 中国地质灾害与防治学报, 2013,24(2):26-30. |
[30] | 许捍卫, 房晓亮, 任家勇, 等. 基于SketchUp的城市三维建模技术[J]. 测绘科学, 2011,36(1):213-214,189. |
[31] | 吴丹子. 基于CAD SketchUp Photoshop三位一体的新农村景观设计实例[J]. 农业网络信息, 2012(9):8-11. |
[32] | 杨波, 陈亚安, 岳栋涛. 三维数字校园建模——以咸阳师范学院为例[J]. 测绘与空间地理信息, 2018,41(4):5-7. |
[33] | 樊运晓, 罗云, 陈庆寿. 区域承灾体脆弱性评价指标体系研究[J]. 现代地质, 2001,15(1):113-116. |
[34] | 张斌, 赵前胜, 姜瑜君. 区域承灾体脆弱性指标体系与精细量化模型研究[J]. 灾害学, 2010,25(2):36-40. |
[35] | 张华杰, 袁国斌, 墙芳躅, 等. 滑坡预测与风险评价专家系统[J]. 地学前缘, 1996,3(1):105-109. |
[36] | 祁元, 刘勇, 杨正华, 等. 基于GIS的兰州滑坡与泥石流灾害危险性分析[J]. 冰川冻土, 2012,34(1):96-104. |
[37] | 欧阳波, 贺赟. 用户研究和用户体验设计[J]. 江苏大学学报(自然科学版), 2006(增1):55-57. |
[38] | 陈为. 用户体验设计要素及其在产品设计中的应用[J]. 包装工程, 2011,32(10):26-29,39. |
[39] | 林一, 陈靖, 刘越, 等. 基于心智模型的虚拟现实与增强现实混合式移动导览系统的用户体验设计[J]. 计算机学报, 2015,38(2):408-422. |
[40] | 蒋忠信, 崔鹏, 王成华. 进藏交通干线减灾选线理论原则[J]. 铁道工程学报, 2004,21(2):1-6. |
[41] | 杨锋, 杜俊旺, 阮飞鹏. 抗滑明洞在高速公路膨胀土滑坡治理中的应用研究[J]. 公路交通科技(应用技术版), 2012,8(9):230-233. |
[42] | 曹小亮, 曹亮亮. 预制拱圈式抗滑明洞在滑坡治理中的应用[J]. 现代交通技术, 2020,17(1):1-5. |
[1] | YANG Xiaohui, ZHU Peng, YUAN Zhongxia, ZHANG Weixiong, DING Baoyan. Deformation Characteristics and Revival Mechanism of Yahuokou Multi-stage Landslide in Zhouqu, Gansu Province [J]. Geoscience, 2023, 37(04): 1004-1012. |
[2] | NIE Qiong, NIE Zhibao, CHEN Jian, DING Shijun, WU Saier, LI Duo, GE Runze, CHEN Ruichen. Development Characteristics and Risk Assessment of the Damogou Debris Flow in Mentougou District, Beijing [J]. Geoscience, 2023, 37(04): 1013-1022. |
[3] | ZHOU Hongfu, FANG Tian, XIA Chenhao, RAN Tao, XU Ruge, ZHANG Jinghua. Reactivation Characteristics and Mechanism of Engineering Disturbed Dumi Landslide in Western Sichuan Province, China [J]. Geoscience, 2023, 37(04): 1044-1053. |
[4] | TIAN Shequan. Application and Research of Remote Sensing Integrated Geological Interpretation in China-Nepal Railway Survey [J]. Geoscience, 2023, 37(04): 1054-1064. |
[5] | ZENG Shuai, MA Zhigang, ZHAO Cong, YANG Lei, ZHANG Su, DONG Jihong, LIANG Jingtao, YAN Shengwu. Multi-Source Remote Sensing Recognition of Reactivation Characteristics of An Ancient Landslide Group at Taipingqiao in the Dadu River Catchment, Eastern Tibetan Plateau [J]. Geoscience, 2023, 37(04): 994-1003. |
[6] | MA Junxue, CHEN Jian, CUI Zhijiu, LIU Beibei. HEC-RAS-/GIS-Based Paleohydraulic Reconstruction of the Diexi Ancient Landslide-Dammed Lake Outburst Flood in Western Sichuan Province [J]. Geoscience, 2022, 36(02): 610-623. |
[7] | HAN Shuai, SUN Ping, LI Rongjian, ZHANG Jin, LI Xiaobin, ZHU Enzhen. Experimental Study on Mechanism of Heavy Rainfall-induced Loess-mudstone Landslides in Tianshui Area,Gansu [J]. Geoscience, 2021, 35(03): 720-731. |
[8] | WANG Haojie, SUN Ping, HAN Shuai, ZHANG Shuai, LI Xiaobin, WANG Tao, XIN Peng, GUO Qiang. Failure Mechanism of the Changhe Landslide on September 14, 2019 in Tongwei, Gansu [J]. Geoscience, 2021, 35(03): 732-743. |
[9] | ZHANG Luming, YANG Dong, ZHOU Yong, LIU Peng. Genetic Model, Outbreak Features and Prevention of Post-seismic Deep-cut Trough-type Debris Flow: An Example from Yazhagou of Jiuzhaigou, Sichuan Province [J]. Geoscience, 2021, 35(03): 744-752. |
[10] | SUN Yongbin, WANG Shen, GAO Lihui, WANG Ruijun, WANG Feng, DONG Shuangfa, WANG Bing, ZHANG En, LI Cunjin. Development Characteristics of Huozigou Debris Flow at Nanwandao,Yanqing District, Beijing [J]. Geoscience, 2021, 35(03): 753-762. |
[11] | GUO Changbao, WU Rui’an, JIANG Liangwen, ZHONG Ning, WANG Yang, WANG Dong, ZHANG Yongshuang, YANG Zhihua, MENG Wen, LI Xue, LIU Gui. Typical Geohazards and Engineering Geological Problems Along the Ya’an-Linzhi Section of the Sichuan-Tibet Railway,China [J]. Geoscience, 2021, 35(01): 1-17. |
[12] | WANG Jiazhu, GAO Yanchao, RAN Tao, TIE Yongbo, ZHANG Fan. Analysis of Genetic Mechanism and Failure Mode of a Large Paleo-landslide in Sichuan-Tibet Railway Transportation Corridor [J]. Geoscience, 2021, 35(01): 18-25. |
[13] | YAN Yiqiu, YANG Zhihua, ZHANG Xujiao, MENG Shaowei, GUO Changbao, WU Ruian, ZHANG Yiying. Landslide Susceptibility Assessment Based on Weight-of-Evidence Modeling of the Batang Fault Zone, Eastern Tibetan Plateau [J]. Geoscience, 2021, 35(01): 26-37. |
[14] | QUAN Xuerui, HUANG Yehuan, LIU Chun, GUO Changbao. Numerical Simulation Study on Seismic Magnification Effect of V-shaped Deep-cut Valley on Sichuan-Tibet Railway Line [J]. Geoscience, 2021, 35(01): 38-46. |
[15] | LI Xue, GUO Changbao, YANG Zhihua, LIAO Wei, WU Ruian, JIN Jijun, HE Yuanxiao. Development Characteristics and Formation Mechanism of the Xiongba Giant Ancient Landslide in the Jinshajiang Tectonic Zone [J]. Geoscience, 2021, 35(01): 47-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||