Geoscience ›› 2022, Vol. 36 ›› Issue (02): 610-623.DOI: 10.19657/j.geoscience.1000-8527.2021.168
• Water Resources and Environmental Research • Previous Articles Next Articles
MA Junxue1(), CHEN Jian1(
), CUI Zhijiu2, LIU Beibei3
Received:
2021-05-20
Revised:
2022-03-01
Online:
2022-04-10
Published:
2022-06-01
Contact:
CHEN Jian
CLC Number:
MA Junxue, CHEN Jian, CUI Zhijiu, LIU Beibei. HEC-RAS-/GIS-Based Paleohydraulic Reconstruction of the Diexi Ancient Landslide-Dammed Lake Outburst Flood in Western Sichuan Province[J]. Geoscience, 2022, 36(02): 610-623.
Fig.4 Map showing the reconstructed original lake surface area and responding volume of the ancient Diexi landslide-dammed lake, with a water surface elevation of 2,355 m a.s.l.
模型 | 参数 | 取值 | |
---|---|---|---|
几何模型 | DEM分辨率/m | 10×10 | |
模拟河段长度/m | 7 615 | ||
横剖面数量/条 | 41 | ||
剖面线平均间距/m | 190 | ||
水力模型 | 粗糙度系数 (曼宁系数) | 河道 | 0.004 |
洪泛区 | 0.006 | ||
收缩系数 | 0.1 | ||
膨胀系数 | 0.3 | ||
边界条件 | 上游 | 预设洪峰流量 | |
下游 | 河床底坡S = 0.005 m/m | ||
洪水流态 | 亚临界稳定流 |
Table 1 Data input for the HCE-RAS hydraulic reconstruction model of the Diexi ancient LLOF
模型 | 参数 | 取值 | |
---|---|---|---|
几何模型 | DEM分辨率/m | 10×10 | |
模拟河段长度/m | 7 615 | ||
横剖面数量/条 | 41 | ||
剖面线平均间距/m | 190 | ||
水力模型 | 粗糙度系数 (曼宁系数) | 河道 | 0.004 |
洪泛区 | 0.006 | ||
收缩系数 | 0.1 | ||
膨胀系数 | 0.3 | ||
边界条件 | 上游 | 预设洪峰流量 | |
下游 | 河床底坡S = 0.005 m/m | ||
洪水流态 | 亚临界稳定流 |
输入 参数 | 初始值 | 改变量/cm | 洪峰流量 | ||
---|---|---|---|---|---|
计算值/ (m3/s) | 变化量/ (m3/s) | 相对误 差/% | |||
水面 高度 | 2 106 m | +10 | 73 580 | +520 | +0.71 |
-10 | 72 500 | -560 | -0.77 | ||
+30 | 74 470 | +1 410 | +2.24 | ||
-30 | 71 618 | -1 442 | -2.29 | ||
+50 | 75 500 | +2 440 | +3.87 | ||
-50 | 70 650 | -2 410 | -3.82 | ||
+100 | 77 880 | +4 820 | +7.64 | ||
-100 | 68 290 | -4 770 | -7.56 | ||
曼宁系 数(n) | 河道0.04, 洪泛区 0.06 | +10%(河道0.044,洪泛区0.066) | 55 632 | -7 428 | -11.78 |
-10%(河道0.036,洪泛区0.054) | 81 820 | +8 760 | +11.99 | ||
下游边 界条件 | 河床底坡 S=0.005 m/m | +10%(0.005 5) | 73 070 | +10 | +0.02 |
-10%(0.004 5) | 73 020 | -40 | -0.06 | ||
+20%(0.006) | 73 078 | +18 | +0.03 | ||
-20%(0.004) | 73 010 | -50 | -0.08 | ||
横剖面 数量 | 41条 | 87条 | 51 621 | -11 439 | -18.14 |
28条 | 83 648 | +10 588 | +16.79 | ||
水流方向 | 弯曲型 | 相对平直型 | 73 060 | 0 | 0 |
DEM 分辨率 | 10 m×10 m | 30 m×30 m | 72 945 | -115 | -0.18 |
Table 2 Sensitivity assessment on the HEC-RAS results for the Diexi ancient LLOF
输入 参数 | 初始值 | 改变量/cm | 洪峰流量 | ||
---|---|---|---|---|---|
计算值/ (m3/s) | 变化量/ (m3/s) | 相对误 差/% | |||
水面 高度 | 2 106 m | +10 | 73 580 | +520 | +0.71 |
-10 | 72 500 | -560 | -0.77 | ||
+30 | 74 470 | +1 410 | +2.24 | ||
-30 | 71 618 | -1 442 | -2.29 | ||
+50 | 75 500 | +2 440 | +3.87 | ||
-50 | 70 650 | -2 410 | -3.82 | ||
+100 | 77 880 | +4 820 | +7.64 | ||
-100 | 68 290 | -4 770 | -7.56 | ||
曼宁系 数(n) | 河道0.04, 洪泛区 0.06 | +10%(河道0.044,洪泛区0.066) | 55 632 | -7 428 | -11.78 |
-10%(河道0.036,洪泛区0.054) | 81 820 | +8 760 | +11.99 | ||
下游边 界条件 | 河床底坡 S=0.005 m/m | +10%(0.005 5) | 73 070 | +10 | +0.02 |
-10%(0.004 5) | 73 020 | -40 | -0.06 | ||
+20%(0.006) | 73 078 | +18 | +0.03 | ||
-20%(0.004) | 73 010 | -50 | -0.08 | ||
横剖面 数量 | 41条 | 87条 | 51 621 | -11 439 | -18.14 |
28条 | 83 648 | +10 588 | +16.79 | ||
水流方向 | 弯曲型 | 相对平直型 | 73 060 | 0 | 0 |
DEM 分辨率 | 10 m×10 m | 30 m×30 m | 72 945 | -115 | -0.18 |
计算方法 | 参数 | 初始值 | 改变量 | 洪峰流量 | |||||
---|---|---|---|---|---|---|---|---|---|
初始值/ (m3/s) | 计算值/ (m3/s) | 变化量/ (m3/s) | 相对误 差/% | 备注 | |||||
线性回 归方程 | 公式(1)[ | 堰塞湖库 容量(Vw) | 2.9×109 m3 | +10% | 74 500 | 78 405 | +3 905 | +5.38 | 理想误差范围 |
-10% | 70 494 | -4 006 | -5.11 | ||||||
+20% | 82 105 | +7 605 | +10.79 | 最大可接受 误差范围 | |||||
-20% | 66 228 | -8 272 | -10.08 | ||||||
公式(2)[ | 堰塞湖库 容量(V) | 2.9×109 m3 | +10% | 76 600 | 80 024 | +3 424 | +4.58 | 理想误差范围 | |
-10% | 72 968 | -3 632 | -4.54 | ||||||
+20% | 83 292 | +6 692 | +9.17 | 最大可接受 误差范围 | |||||
-20% | 69 120 | -7 480 | -8.98 | ||||||
简易参 数方程 | 公式(3)[ | 溃决 高度(d) | 53 m | +3 m | 76 800 | 88 159 | +11 359 | +14.79 | 理想误差范围 |
-3 m | 66 408 | -10 392 | -13.53 | ||||||
+5 m | 96 242 | +19 442 | +25.31 | 最大可接受 误差范围 | |||||
-5 m | 59 965 | -16 835 | -21.92 |
Table 3 Uncertainty assessment of the outburst flood peak discharge
计算方法 | 参数 | 初始值 | 改变量 | 洪峰流量 | |||||
---|---|---|---|---|---|---|---|---|---|
初始值/ (m3/s) | 计算值/ (m3/s) | 变化量/ (m3/s) | 相对误 差/% | 备注 | |||||
线性回 归方程 | 公式(1)[ | 堰塞湖库 容量(Vw) | 2.9×109 m3 | +10% | 74 500 | 78 405 | +3 905 | +5.38 | 理想误差范围 |
-10% | 70 494 | -4 006 | -5.11 | ||||||
+20% | 82 105 | +7 605 | +10.79 | 最大可接受 误差范围 | |||||
-20% | 66 228 | -8 272 | -10.08 | ||||||
公式(2)[ | 堰塞湖库 容量(V) | 2.9×109 m3 | +10% | 76 600 | 80 024 | +3 424 | +4.58 | 理想误差范围 | |
-10% | 72 968 | -3 632 | -4.54 | ||||||
+20% | 83 292 | +6 692 | +9.17 | 最大可接受 误差范围 | |||||
-20% | 69 120 | -7 480 | -8.98 | ||||||
简易参 数方程 | 公式(3)[ | 溃决 高度(d) | 53 m | +3 m | 76 800 | 88 159 | +11 359 | +14.79 | 理想误差范围 |
-3 m | 66 408 | -10 392 | -13.53 | ||||||
+5 m | 96 242 | +19 442 | +25.31 | 最大可接受 误差范围 | |||||
-5 m | 59 965 | -16 835 | -21.92 |
参数 | 统计位置 | ||||
---|---|---|---|---|---|
Loc.1 | Loc.2 | Loc.3 | Loc.4 | Loc.5 | |
统计数量 | 36 | 30 | 30 | 40 | 38 |
最大平均粒径/m | 4.3 | 3.6 | 2.9 | 1.9 | 1.7 |
Table 4 Statistics of the largest boulder diameter along the downstream channels of the relict Diexi paleo-landslide dam
参数 | 统计位置 | ||||
---|---|---|---|---|---|
Loc.1 | Loc.2 | Loc.3 | Loc.4 | Loc.5 | |
统计数量 | 36 | 30 | 30 | 40 | 38 |
最大平均粒径/m | 4.3 | 3.6 | 2.9 | 1.9 | 1.7 |
[1] | 张岩, 朱利东, 杨文光, 等. 青藏高原东缘叠溪海盆地40-30kaBP高分辨率快速气候变化记录[J]. 地学前缘, 2009, 16(5): 91-98. |
[2] | 张岳桥, 李海龙, 李建. 青藏高原30-40 ka B.P.暖湿气候事件对川西河谷地质环境的影响[J]. 地球学报, 2016, 37(4): 481-492. |
[3] | DAI F C, LEE C F, DENG J H, et al. The1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, South-western China[J]. Geomorphology, 2005, 65: 205-221. |
[4] | CHEN J, DAI F C, LV T Y, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, 298: 107-113. |
[5] | 陈剑, 崔之久. 金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义[J]. 沉积学报, 2015, 33(2): 275-284. |
[6] | 张永双, 赵希涛, 胡道功. 滇西北德钦地区金沙江奔子栏古堰塞湖的发现及意义[J]. 地质通报, 2007, 26(8): 970-975. |
[7] | KORUP O, MONTOMERY D R. Tibetan Plateau river incision inhibited by glacial stabilization of the Tsangpo Gorge[J]. Nature, 2008, 455: 786-789. |
[8] | 韩建恩, 孟庆伟, 郭长宝, 等. 雅鲁藏布江中游杰德秀古湖的发现及其意义[J]. 现代地质, 2017, 31(5): 890-899. |
[9] | 柴贺军, 刘汉超. 岷江上游多级多期崩滑堵江事件初步研究[J]. 山地学报, 2002, 20(5): 616-620. |
[10] | CUI P, DANG C, ZHANG J Q, et al. Landslide-dammed lake at Tangjiashan, Sichuan Province, China (triggered by the Wenchuan Earthquake, May 12, 2008): risk assessment, mitigation strategy, and lessons learned[J]. Environmental Earth Sciences, 2012, 65(4): 1055-1065. |
[11] | ZHOU J W, CUI P, FANG H. Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan Earthquake, China[J]. Landslides, 2013, 10(3): 331-342. |
[12] | LIU W M, HU K H, CARLING P A, et al. The establishment and influence of Baimakou paleo-dam in an upstream reach of the Yangtze River, southeastern margin of the Tibetan Plateau[J]. Geomorphology, 2018, 321: 167-173. |
[13] | COSTA J E, SCHUSTER R L. The formation and failure of na-tural dams[J]. Geological Society of America Bulletin, 1988, 100: 1054-1068. |
[14] | MONTOMERY D R, HALLET B, LIU Y P, et a1. Evidence for Holocene megafloods down the Tsangpo River gorge, Southeastern Tibet[J]. Quaternary Research, 2004, 62(2): 201-207. |
[15] | CHEN J, ZHOU W, CUI Z J, et al. Formation process of a large paleoland slide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating[J]. Landslides, 2018, 15(12): 2399-2412. |
[16] | 赵希涛, 曲永新, 张永双, 等. 滇西北丽江地区石鼓古湖的发现及其在现代金沙江河谷发育中的意义[J]. 地质通报, 2007, 26(8): 960-969. |
[17] | 明庆忠, 潘保田, 苏怀, 等. 金沙江河谷-水系演化的崩滑外动力作用研究[J]. 云南师范大学学报(自然科学版), 2013, 33(5): 1-8. |
[18] | WANG P F, CHEN J, DAI F C, et al. Chronology of relict lake deposits around the Suwalong paleoland slide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 2014, 217: 193-203. |
[19] | 龙维, 陈剑, 王鹏飞, 等. 金沙江上游特米大型古滑坡的成因及古地震参数反分析[J]. 地震研究, 2015, 38(4): 568-575. |
[20] | 王兰生, 王小群, 许向宁, 等. 岷江上游近两万年前发生了什么事件?[J]. 地学前缘, 2007, 14(4): 189-196. |
[21] | 程雪峰, 范念念, 刘维明, 等. 两万年来岷江汶川古堰塞湖事件研究[J]. 山地学报, 38(4): 561-570. |
[22] | 钟湖平, 吉锋. 大渡河加郡古堰塞湖沉积特征及演变过程初探[J]. 中国水运, 2012, 12(4): 182-184. |
[23] | 李海龙, 张岳桥, 乔彦松, 等. 青藏高原东缘大渡河中游深切河谷沉积物及其地震地质意义[J]. 地质通报, 2015, 34(1): 104-112. |
[24] | COSTA J E. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range[J]. Geological Society of American Bulletin, 1983, 94(8): 986-1004. |
[25] | EVANS S G. The maximum discharge of outburst floods caused by the breaching of man-made and natural dams[J]. Canadian Geotechnical Journal, 1986, 23(3): 385-387. |
[26] | WALDER J S, OCONNOR J E. Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams[J]. Water Resources Research, 1997, 33(10): 2337-2348. |
[27] | PIERCE M W, THORNTON C I, ABT S R. Predicting peak outflow from breached embankment dams[J]. Journal of Hydrologic Engineering, 2010, 15(5): 338-349. |
[28] | 郭永强, 葛永刚, 陈晓清, 等. 高山峡谷区古洪水事件重建研究进展[J]. 地学前缘, 2021, 28(2): 168-180. |
[29] | 王光明, 查小春, 黄春长, 等. HEC-RAS模型在汉江上游洪水演进和流量重建中的应用[J]. 西北农林科技大学学报(自然科学版), 2017, 45(12): 129-137. |
[30] | ANEES M T, ABDULLAH K, NAWAWI M N M, et al. Numerical modeling techniques for flood analysis[J]. Journal of African Earth Sciences, 2016, 124: 478-486. |
[31] | RUIZ-BELLET J L, CASTELLTORT X, BALASCH J C, et al. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)[J]. Journal of Hydrology, 2017, 545: 339-354. |
[32] | BEN KHALFALLAH C, SAIDI S. Spatiotemporal flood plain mapping and prediction using HEC-RAS-GIS tools: Case of the Mejerda River, Tunisia[J]. Journal of African Earth Sciences, 2018, 142: 44-51. |
[33] | ALHO P, AALTONEN J. Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods[J]. Hydrological Processes, 2008, 22(10): 1537-1547. |
[34] | WANG P, ZHANG B, QIU W L, et al. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet[J]. Journal of Asian Earth Sciences, 2011, 40(4): 865-872. |
[35] | 范宣梅, 戴岚欣, 钟育瑾, 等. 岷江上游叠溪古滑坡坝--堰塞湖研究进展[J]. 地学前缘, 2021, 28(2): 71-84. |
[36] | MA J X, CHEN J, CUI Z J, et al. Sedimentary evidence of outburst deposits induced by the Diexi paleolandslide-dammed lake of the upper Minjiang River in China[J]. Quaternary International, 2018, 464: 460-481. |
[37] | 中华人民共和国区域地质调查报告(1∶200000)松潘幅(I-48-XXXII)、茂汶幅(H-48-II)[R]. 成都:四川省地质局第二区域地质测量队二分队, 1975. |
[38] | 《四川省阿坝藏族羌族自治州茂汶羌族自治县地方志》编纂委员会. 茂汶羌族自治县志[M]. 成都: 四川辞书出版社, 1997: 90-94. |
[39] | 马俊学, 陈剑, 崔之久, 等. 堰塞湖溃坝堆积物的粒度特征分析: 以岷江上游叠溪古滑坡堰塞湖为例[J]. 现代地质, 2017, 31(6): 1261-1268. |
[40] | 马俊学, 陈剑, 崔之久. 岷江上游叠溪混杂堆积体的沉积特征及其成因分析[J]. 沉积学报, 2019, 37(1): 72-85. |
[41] | WESTOBY M J, GLASSER N F, BRASINGTON J, et al. Mo-delling outburst floods from moraine-dammed glacial lakes[J]. Earth-Science Reviews, 2014, 134: 137-159. |
[42] | CLAGUE J J, EVANS S G. A review of catastrophic drainage of moraine-dammed lakes in British Columbia[J]. Quaternary Science Reviews, 2000, 19(17/18): 1763-1783. |
[43] | BUTT M J, UMAR M, QAMAR R. Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan[J]. Natural Hazards, 2013, 65(1):241-254. |
[44] | CENDERELLI D A.Floods from natural and artificial dam failures[M]// WOHL E E. Inland Flood Hazards. Cambridge: Cambridge University Press, 2000: 73-103. |
[45] | MORRIS M W, HASSAN M, KORTENHAUS A, et al. Modelling breach initiation and growth[R]. Wallingford: HR Wallingford, 2009: 581-591. |
[46] | CAPART H. Analytical solutions for gradual dam breaching and downstream river flooding[J]. Water Resources Research, 2013, 49(4): 1968-1987. |
[47] | BRADLEY W C, MEARS A I. Calculations of flows needed to transport coarse fraction of Boulder Creek alluvium at Boulder, Colorado[J]. Geological Society of America Bulletin, 1980, 91: 1057-1090. |
[48] | US Army Corps of Engineers Hydraulic Engineering Center. HEC-RES River Analysis System User’s Manual Version 4.1[M]. Davis:US Army Corps of Engineers, Institute for Water Resources, Hydraulic Engineering Center (HEC), 2010. |
[49] | WALDER J S, O’CONNOR J E. Methods for predicting peak discharge of floods caused by failure of natural and constructed earthen dams[J]. Water Resources Research, 1997, 33(10):2337-2348. |
[50] | BRUNNER G W. HEC-RES River Analysis System Hydraulic Reference Manual[M]. Ver 4.0.Davis:US Army Corps of Engineers, Hydraulic Engineering Center, 2008. |
[51] | 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. |
[52] | 余志球, 邓建辉, 高云建, 等. 金沙江白格滑坡及堰塞湖洪水灾害分析[J]. 防灾减灾工程学报, 2020, 40(2): 286-292. |
[53] | 陈祖煜, 陈生水, 王琳, 等. 金沙江上游“11-03”白格堰塞湖溃决洪水反演分析[J]. 中国科学(技术科学), 2020, 50(6): 763-774. |
[54] | 谢忱, 陈骎, 侯奇东, 等. 金沙江白格堰塞坝自然泄流冲刷溃决过程数值模拟[J]. 人民长江, 2021, 52(8): 22-29. |
[55] | HERGET J, FONTANA A. Palaeohydrology:Traces, Tracks and Trails of Extreme Events[M]. Dordrecht: Springer, 2020. |
[56] | 王昊, 崔鹏, PAUL A C. 高能洪水沉积研究综述[J]. 地学前缘, 2021, 28(2): 140-167. |
[57] | 张信宝, 刘彧, 胡凯衡. 金沙江折向东流的地质背景、古堰塞湖沉积、第四纪河流演化[J]. 山地学报, 2020, 38(6): 805-815. |
[58] | 刘青, 王伟, 高星, 等. 大型滑坡坝溃决对下游河谷坡岸的影响分析--以白格滑坡下游50 km内的河谷边坡为例[J]. 山地学报, 2021, 39(2): 226-237. |
[59] | 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2): 85-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||