Geoscience ›› 2019, Vol. 33 ›› Issue (03): 615-628.DOI: 10.19657/j.geoscience.1000-8527.2019.001
• Structural Geology and Stratigraphy • Previous Articles Next Articles
TAN Cong1(), YUAN Xuanjun1(
), YU Bingsong2, LIU Ce1, LI Wen3, Cui Jingwei1
Received:
2018-05-14
Revised:
2019-01-24
Online:
2019-06-23
Published:
2019-06-24
Contact:
YUAN Xuanjun
CLC Number:
TAN Cong, YUAN Xuanjun, YU Bingsong, LIU Ce, LI Wen, Cui Jingwei. Geochemical Characteristics and Paleoclimatic Implications of the Upper Permian and Middle-Lower Triassic Strata in Southern Ordos Basin[J]. Geoscience, 2019, 33(03): 615-628.
主量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
SiO2 | 56.18(47.77~62.35)/10 | 57.44(52.68~77.91)/19 | 51.92(24.92~63.50)/12 | 59.47(47.59~68.44)/5 |
Al2O3 | 16.43(13.00~17.88)/10 | 16.30(10.47~20.09)/19 | 15.30(6.52~20.95)/12 | 13.85(9.61~20.02)/5 |
Fe2O3 | 5.95(4.78~7.98)/10 | 6.54(2.91~8.48)/19 | 6.67(1.75~8.88)/12 | 4.86(2.18~7.83)/5 |
MgO | 4.65(3.17~6.78)/10 | 3.12(1.86~3.58)/19 | 3.18(1.85~3.97)/12 | 4.14(3.48~4.69)/5 |
CaO | 2.25(0.55~5.95)/10 | 3.42(0.42~6.18)/19 | 7.67(1.36~33.67)/12 | 3.12(0.67~7.56)/5 |
Na2O | 0.64(0.39~0.93)/10 | 0.88(0.67~1.41)/19 | 0.93(0.51~2.15)/12 | 0.62(0.56~0.64)/5 |
K2O | 4.03(2.86~4.78)/10 | 4.16(2.35~5.48)/19 | 4.10(3.60~5.57)/12 | 4.42(3.94~4.81)/5 |
MnO | 0.048(0.018~0.131)/10 | 0.043(0.012~0.067)/19 | 0.07(0.033~0.10)/12 | 0.040(0.022~0.075)/5 |
TiO | 0.62(0.55~0.68)/10 | 0.69(0.20~0.80)/19 | 0.70(0.29~0.90)/12 | 0.79(0.66~0.91)/5 |
P2O3 | 0.14(0.11~0.21)/10 | 0.16(0.08~0.21)/19 | 0.16(0.05~0.27)/12 | 0.15(0.07~0.23)/5 |
FeO | 2.10(1.18~3.14)/10 | 1.97(1.51~3.2)/19 | 2.05(1.68~2.75)/12 | 3.07(2.51~4.23)/5 |
Table 1 Analysis results of major elements for the Permian-Triassic strata in the Shichuanhe section(%)
主量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
SiO2 | 56.18(47.77~62.35)/10 | 57.44(52.68~77.91)/19 | 51.92(24.92~63.50)/12 | 59.47(47.59~68.44)/5 |
Al2O3 | 16.43(13.00~17.88)/10 | 16.30(10.47~20.09)/19 | 15.30(6.52~20.95)/12 | 13.85(9.61~20.02)/5 |
Fe2O3 | 5.95(4.78~7.98)/10 | 6.54(2.91~8.48)/19 | 6.67(1.75~8.88)/12 | 4.86(2.18~7.83)/5 |
MgO | 4.65(3.17~6.78)/10 | 3.12(1.86~3.58)/19 | 3.18(1.85~3.97)/12 | 4.14(3.48~4.69)/5 |
CaO | 2.25(0.55~5.95)/10 | 3.42(0.42~6.18)/19 | 7.67(1.36~33.67)/12 | 3.12(0.67~7.56)/5 |
Na2O | 0.64(0.39~0.93)/10 | 0.88(0.67~1.41)/19 | 0.93(0.51~2.15)/12 | 0.62(0.56~0.64)/5 |
K2O | 4.03(2.86~4.78)/10 | 4.16(2.35~5.48)/19 | 4.10(3.60~5.57)/12 | 4.42(3.94~4.81)/5 |
MnO | 0.048(0.018~0.131)/10 | 0.043(0.012~0.067)/19 | 0.07(0.033~0.10)/12 | 0.040(0.022~0.075)/5 |
TiO | 0.62(0.55~0.68)/10 | 0.69(0.20~0.80)/19 | 0.70(0.29~0.90)/12 | 0.79(0.66~0.91)/5 |
P2O3 | 0.14(0.11~0.21)/10 | 0.16(0.08~0.21)/19 | 0.16(0.05~0.27)/12 | 0.15(0.07~0.23)/5 |
FeO | 2.10(1.18~3.14)/10 | 1.97(1.51~3.2)/19 | 2.05(1.68~2.75)/12 | 3.07(2.51~4.23)/5 |
微量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
V | 116.9(97.9~150.0)/10 | 91.5(40.4~140.0)/19 | 87.78(33.1~136.0)/12 | 163(139~186)/5 |
Cr | 72.74(58.60~82.50)/10 | 72.03(25.70~90.90)/19 | 68.29(30.0~101.0)/12 | 107.24(90.40~117.00)/5 |
Co | 16.36(13.80~19.70)/10 | 15.83(5.33~19.30)/19 | 16.63(8.09~24.20)/12 | 19.76(16.30~25.10)/5 |
Ni | 29.35(26.70~37.20)/10 | 29.19(9.56~37.10)/19 | 30.7(24.7~46.1)/12 | 35.04(30.50~41.40)/5 |
Cu | 31.25(10.80~59.50)/10 | 14.9(11.3~18.0)/19 | 28.7(13.6~38.8)/12 | 56.06(44.70~72.70)/5 |
Zn | 92.68(77.60~108.00)/10.00 | 91.93(37.50~127.00)/19 | 88.12(37.30~118.00)/12 | 119.6(110.00~135.00)/5 |
Ga | 23.24(18.0~27.10)/10 | 21.54(11.30~29.10)/19 | 20.94(9.71~28.20)/12 | 30.72(25.00~34.70)/5 |
Rb | 157.8(112.0~181.0)/10 | 167.25(74.10~201.0)/19 | 162.32(72.10~192.00)/12 | 211.6(195.00~225.00)/5 |
Sr | 107.28(77.0~140.0)/10 | 89.04(74.00~105.00)/19 | 124.56(101.00~161.00)/12 | 119.24(82.20~134.00)/5 |
Y | 28.49(23.90~31.60)/10 | 24.51(11.1~36.0)/19 | 28.46(19.70~35.80)/12 | 29.26(27.60~31.20)/5 |
Ba | 334(207~584)/10 | 292.75(261.00~324.00)/19 | 313.25(286.00~345.00)/12 | 300(260~318)/5 |
La | 38.61(33.0~42.50)/10 | 41.77(14.00~52.8)/19 | 43.48(35.50~66.80)/12 | 59.26(45.80~70.80)/5 |
Ce | 74.28(60.10~82.20)/10 | 84.98(75.40~102.0)/19 | 84.71(55.00~134.00)/12 | 105.82(85.10~126.00)/5 |
Nd | 31.6(25.4~38.2)/10 | 34.4(12.7~43.1)/19 | 37.55(31.90~48.0)/12 | 45.2(38.0~50.4)/5 |
Tb | 0.93(0.80~1.09)/10 | 0.88(0.41~1.16)/19 | 0.90(0.67~1.08)/12 | 1.24(1.07~1.18)/5 |
W | 1.73(1.44~1.98)/10 | 2.08(1.98~2.20)/19 | 1.99(0.67~2.62)/12 | 2.40(1.97~2.74)/5 |
Tl | 1.34(0.93~1.63)/10 | 0.99(0.57~1.89)/19 | 0.97(0.39~1.73)/12 | 1.92(1.76~2.03)/5 |
Pb | 23.0(10.0~54.4)/10 | 26.57(11.20~46.40)/19 | 23.65(7.48~32.10)/12 | 20.84(13.90~35.40)/5 |
Bi | 0.42(0.24~0.54)/10 | 0.38(0.13~0.59)/19 | 0.61(0.57~0.68)/12 | 0.68(0.37~0.93)/5 |
Th | 13.45(11.70~14.90)/10 | 13.61(11.0~16.8)/19 | 13.91(5.96~20.60)/12 | 20.54(16.4~24.0)/5 |
U | 3.29(2.90~4.2)/10 | 2.45(1.12~3.90)/19 | 2.25(0.89~3.52)/12 | 4.88(2.86~7.48)/5 |
Nb | 14.63(12.60~16.90)/10 | 15.33(5.31~20.90)/19 | 16.23(6.60~20.50)/12 | 23.6(18.8~26.8)/5 |
Zr | 254.5(191.0~282.0)/10 | 129.04(76.6~323.0)/19 | 124.32(40.10~189.00)/12 | 216.6(171.0~259.0)/5 |
Hf | 6.64(5.06~7.37)/10 | 3.46(2.22~8.15)/19 | 3.40(1.10~5.12)/12 | 5.92(4.50~7.21)/5 |
Table 2 Analysis results of trace elements for the Permian-Triassic strata in the Shichuanhe section(μg/g)
微量元素 | P3s | T1l | T1h | T2z |
---|---|---|---|---|
V | 116.9(97.9~150.0)/10 | 91.5(40.4~140.0)/19 | 87.78(33.1~136.0)/12 | 163(139~186)/5 |
Cr | 72.74(58.60~82.50)/10 | 72.03(25.70~90.90)/19 | 68.29(30.0~101.0)/12 | 107.24(90.40~117.00)/5 |
Co | 16.36(13.80~19.70)/10 | 15.83(5.33~19.30)/19 | 16.63(8.09~24.20)/12 | 19.76(16.30~25.10)/5 |
Ni | 29.35(26.70~37.20)/10 | 29.19(9.56~37.10)/19 | 30.7(24.7~46.1)/12 | 35.04(30.50~41.40)/5 |
Cu | 31.25(10.80~59.50)/10 | 14.9(11.3~18.0)/19 | 28.7(13.6~38.8)/12 | 56.06(44.70~72.70)/5 |
Zn | 92.68(77.60~108.00)/10.00 | 91.93(37.50~127.00)/19 | 88.12(37.30~118.00)/12 | 119.6(110.00~135.00)/5 |
Ga | 23.24(18.0~27.10)/10 | 21.54(11.30~29.10)/19 | 20.94(9.71~28.20)/12 | 30.72(25.00~34.70)/5 |
Rb | 157.8(112.0~181.0)/10 | 167.25(74.10~201.0)/19 | 162.32(72.10~192.00)/12 | 211.6(195.00~225.00)/5 |
Sr | 107.28(77.0~140.0)/10 | 89.04(74.00~105.00)/19 | 124.56(101.00~161.00)/12 | 119.24(82.20~134.00)/5 |
Y | 28.49(23.90~31.60)/10 | 24.51(11.1~36.0)/19 | 28.46(19.70~35.80)/12 | 29.26(27.60~31.20)/5 |
Ba | 334(207~584)/10 | 292.75(261.00~324.00)/19 | 313.25(286.00~345.00)/12 | 300(260~318)/5 |
La | 38.61(33.0~42.50)/10 | 41.77(14.00~52.8)/19 | 43.48(35.50~66.80)/12 | 59.26(45.80~70.80)/5 |
Ce | 74.28(60.10~82.20)/10 | 84.98(75.40~102.0)/19 | 84.71(55.00~134.00)/12 | 105.82(85.10~126.00)/5 |
Nd | 31.6(25.4~38.2)/10 | 34.4(12.7~43.1)/19 | 37.55(31.90~48.0)/12 | 45.2(38.0~50.4)/5 |
Tb | 0.93(0.80~1.09)/10 | 0.88(0.41~1.16)/19 | 0.90(0.67~1.08)/12 | 1.24(1.07~1.18)/5 |
W | 1.73(1.44~1.98)/10 | 2.08(1.98~2.20)/19 | 1.99(0.67~2.62)/12 | 2.40(1.97~2.74)/5 |
Tl | 1.34(0.93~1.63)/10 | 0.99(0.57~1.89)/19 | 0.97(0.39~1.73)/12 | 1.92(1.76~2.03)/5 |
Pb | 23.0(10.0~54.4)/10 | 26.57(11.20~46.40)/19 | 23.65(7.48~32.10)/12 | 20.84(13.90~35.40)/5 |
Bi | 0.42(0.24~0.54)/10 | 0.38(0.13~0.59)/19 | 0.61(0.57~0.68)/12 | 0.68(0.37~0.93)/5 |
Th | 13.45(11.70~14.90)/10 | 13.61(11.0~16.8)/19 | 13.91(5.96~20.60)/12 | 20.54(16.4~24.0)/5 |
U | 3.29(2.90~4.2)/10 | 2.45(1.12~3.90)/19 | 2.25(0.89~3.52)/12 | 4.88(2.86~7.48)/5 |
Nb | 14.63(12.60~16.90)/10 | 15.33(5.31~20.90)/19 | 16.23(6.60~20.50)/12 | 23.6(18.8~26.8)/5 |
Zr | 254.5(191.0~282.0)/10 | 129.04(76.6~323.0)/19 | 124.32(40.10~189.00)/12 | 216.6(171.0~259.0)/5 |
Hf | 6.64(5.06~7.37)/10 | 3.46(2.22~8.15)/19 | 3.40(1.10~5.12)/12 | 5.92(4.50~7.21)/5 |
样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ |
---|---|---|---|---|---|---|---|---|
ljg13 | -4.8 | -6.5 | S15 | -2.8 | -11.8 | S59 | -6.4 | -11.4 |
ljg8 | -5.4 | -9.2 | S16 | -1.8 | -10.0 | sjg20 | -1.9 | -6.8 |
L22 | -2.2 | -5.8 | S17 | -2.5 | -9.0 | S62 | -2.2 | -5.1 |
L21 | -5.2 | -5.1 | S19 | -1.3 | -9.6 | sjg17 | -1.8 | -3.7 |
L20 | -1.9 | -7.0 | S20 | -2.8 | -5.2 | S64 | -2.7 | -6.2 |
L18 | -0.6 | -7.0 | S21 | -3.6 | -12.1 | sjg16 | -0.8 | -6.3 |
L17 | -1.0 | -10.2 | S22 | -2.4 | -12.1 | S66 | -2.5 | -6.4 |
L16 | / | / | S23 | -3.5 | -10.5 | S67 | -2.0 | -6.3 |
L15 | -3.2 | -5.5 | S24 | -0.4 | -6.7 | S68 | -2.3 | -6.9 |
L14 | -2.5 | -7.2 | S25 | -3.1 | -11.2 | S69 | -2.2 | -8.2 |
L13 | / | / | S26 | -1.0 | -7.1 | S70 | -2.6 | -6.2 |
L11 | -3.8 | -8.9 | S27 | -1.2 | -10.0 | sjg15 | -2.0 | -8.7 |
L10 | / | / | S28 | -1.9 | -11.7 | sjg14 | -0.2 | -4.5 |
ljg4 | -2.1 | -12.0 | S29 | -2.4 | -12.0 | S72 | -0.9 | -4.9 |
ljg2 | -2.8 | -8.5 | S30 | -2.5 | -10.9 | S73 | -1.0 | -6.5 |
L9 | / | / | S31 | -2.1 | -6.9 | S74 | -0.3 | -6.1 |
L8 | -4.0 | -11.5 | S32 | -1.7 | -7.7 | S75 | -0.5 | -6.8 |
L7 | / | / | S33 | -0.5 | -7.5 | S76 | -1.8 | -8.9 |
L5 | -3.8 | -7.1 | S34 | -1.8 | -10.3 | sjg12 | -1.3 | -6.1 |
L4 | -5.4 | -7.7 | S35 | -1.7 | -6.9 | S78 | -2.1 | -7.9 |
L3 | -3.2 | -11.2 | S36 | -1.4 | -7.3 | sjg11 | -2.1 | -8.1 |
L2 | -8.2 | -6.8 | S38 | -2.3 | -10.3 | S80 | -2.5 | -7.2 |
L1 | -6.8 | -5.9 | S39 | -2.1 | -9.8 | S81 | -2.9 | -10.4 |
ljg1 | -3.6 | -6.4 | S40 | -2.2 | -7.2 | S82 | -3.5 | -12.7 |
S1 | -6.7 | -10.0 | S41 | -2.6 | -6.5 | S83 | -1.0 | -4.8 |
S2 | -3.7 | -8.5 | S43 | -3.3 | -8.5 | S84 | -1.2 | -6.0 |
sjg30 | -0.4 | -6.6 | S44 | -7.7 | -10.2 | sjg9 | -1.9 | -3.3 |
S4 | -3.3 | -5.8 | S45 | -6.6 | -10.2 | S86 | -3.6 | -6.2 |
S5 | -1.0 | -9.5 | S46 | -6.5 | -11.6 | sjg8 | -3.5 | -10.1 |
sjg28 | -1.6 | -9.1 | S47 | -6.7 | -13.0 | sjg6 | -0.8 | -6.6 |
S7 | -0.6 | -8.3 | S48 | -4.9 | -11.1 | S89 | -3.0 | -4.3 |
S8 | -1.4 | -9.4 | S49 | -5.3 | -10.1 | S90 | -2.5 | -5.8 |
S9 | -2.0 | -10.7 | S50 | -5.8 | -13.9 | S93 | -2.5 | -3.8 |
S10 | -1.8 | -10.4 | S52 | -6.2 | -9.7 | S94 | -3.3 | -4.9 |
S11 | -3.7 | -4.5 | S53 | -6.6 | -11.6 | S95 | -5.2 | -6.2 |
S12 | -0.7 | -8.6 | S54 | -6.8 | -11.8 | S96 | -5.6 | -5.4 |
S13 | -3.7 | -9.2 | S56 | -6.5 | -12.2 | S97 | -5.3 | -9.2 |
S14 | -2.0 | -8.2 | S58 | -6.2 | -11.6 | S98 | -5.6 | -8.3 |
Table 3 Analysis results of carbon and oxygen isotope for the Permian-Triassic strata in the Shichuanhe section
样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ | 样品编号 | δ13C/‰ | δ18O/‰ |
---|---|---|---|---|---|---|---|---|
ljg13 | -4.8 | -6.5 | S15 | -2.8 | -11.8 | S59 | -6.4 | -11.4 |
ljg8 | -5.4 | -9.2 | S16 | -1.8 | -10.0 | sjg20 | -1.9 | -6.8 |
L22 | -2.2 | -5.8 | S17 | -2.5 | -9.0 | S62 | -2.2 | -5.1 |
L21 | -5.2 | -5.1 | S19 | -1.3 | -9.6 | sjg17 | -1.8 | -3.7 |
L20 | -1.9 | -7.0 | S20 | -2.8 | -5.2 | S64 | -2.7 | -6.2 |
L18 | -0.6 | -7.0 | S21 | -3.6 | -12.1 | sjg16 | -0.8 | -6.3 |
L17 | -1.0 | -10.2 | S22 | -2.4 | -12.1 | S66 | -2.5 | -6.4 |
L16 | / | / | S23 | -3.5 | -10.5 | S67 | -2.0 | -6.3 |
L15 | -3.2 | -5.5 | S24 | -0.4 | -6.7 | S68 | -2.3 | -6.9 |
L14 | -2.5 | -7.2 | S25 | -3.1 | -11.2 | S69 | -2.2 | -8.2 |
L13 | / | / | S26 | -1.0 | -7.1 | S70 | -2.6 | -6.2 |
L11 | -3.8 | -8.9 | S27 | -1.2 | -10.0 | sjg15 | -2.0 | -8.7 |
L10 | / | / | S28 | -1.9 | -11.7 | sjg14 | -0.2 | -4.5 |
ljg4 | -2.1 | -12.0 | S29 | -2.4 | -12.0 | S72 | -0.9 | -4.9 |
ljg2 | -2.8 | -8.5 | S30 | -2.5 | -10.9 | S73 | -1.0 | -6.5 |
L9 | / | / | S31 | -2.1 | -6.9 | S74 | -0.3 | -6.1 |
L8 | -4.0 | -11.5 | S32 | -1.7 | -7.7 | S75 | -0.5 | -6.8 |
L7 | / | / | S33 | -0.5 | -7.5 | S76 | -1.8 | -8.9 |
L5 | -3.8 | -7.1 | S34 | -1.8 | -10.3 | sjg12 | -1.3 | -6.1 |
L4 | -5.4 | -7.7 | S35 | -1.7 | -6.9 | S78 | -2.1 | -7.9 |
L3 | -3.2 | -11.2 | S36 | -1.4 | -7.3 | sjg11 | -2.1 | -8.1 |
L2 | -8.2 | -6.8 | S38 | -2.3 | -10.3 | S80 | -2.5 | -7.2 |
L1 | -6.8 | -5.9 | S39 | -2.1 | -9.8 | S81 | -2.9 | -10.4 |
ljg1 | -3.6 | -6.4 | S40 | -2.2 | -7.2 | S82 | -3.5 | -12.7 |
S1 | -6.7 | -10.0 | S41 | -2.6 | -6.5 | S83 | -1.0 | -4.8 |
S2 | -3.7 | -8.5 | S43 | -3.3 | -8.5 | S84 | -1.2 | -6.0 |
sjg30 | -0.4 | -6.6 | S44 | -7.7 | -10.2 | sjg9 | -1.9 | -3.3 |
S4 | -3.3 | -5.8 | S45 | -6.6 | -10.2 | S86 | -3.6 | -6.2 |
S5 | -1.0 | -9.5 | S46 | -6.5 | -11.6 | sjg8 | -3.5 | -10.1 |
sjg28 | -1.6 | -9.1 | S47 | -6.7 | -13.0 | sjg6 | -0.8 | -6.6 |
S7 | -0.6 | -8.3 | S48 | -4.9 | -11.1 | S89 | -3.0 | -4.3 |
S8 | -1.4 | -9.4 | S49 | -5.3 | -10.1 | S90 | -2.5 | -5.8 |
S9 | -2.0 | -10.7 | S50 | -5.8 | -13.9 | S93 | -2.5 | -3.8 |
S10 | -1.8 | -10.4 | S52 | -6.2 | -9.7 | S94 | -3.3 | -4.9 |
S11 | -3.7 | -4.5 | S53 | -6.6 | -11.6 | S95 | -5.2 | -6.2 |
S12 | -0.7 | -8.6 | S54 | -6.8 | -11.8 | S96 | -5.6 | -5.4 |
S13 | -3.7 | -9.2 | S56 | -6.5 | -12.2 | S97 | -5.3 | -9.2 |
S14 | -2.0 | -8.2 | S58 | -6.2 | -11.6 | S98 | -5.6 | -8.3 |
[1] | NECHAEV V P. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments[J]. Journal of Sedimentary Petrology, 1993,63(6):1110-1117. |
[2] | 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011,39(3):405-414. |
[3] | 陈衍景, 杨忠芳, 赵太平, 等. 沉积物微量元素示踪物源区和地壳成分的方法和现状[J]. 地球与环境, 1996,24(3):7-11. |
[4] | 李被, 刘池洋, 黄雷, 等. 东濮凹陷北部沙河街组三段中亚段沉积环境分析[J]. 现代地质, 2018,32(2):227-239. |
[5] |
XIE S, PANCOST R D, YIN H, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005,434:494-497.
DOI URL |
[6] | 殷鸿福, 鲁立强. 二叠系—三叠系界线全球层型剖面——回顾和进展[J]. 地学前缘, 2006,13(6):11-32. |
[7] | 戎嘉余, 方宗杰. 生物大灭绝与复苏:来自华南古生代和三叠纪的证据[M]. 合肥: 中国科学技术大学出版社, 2004: 34-45. |
[8] |
KIDDER D L, WORSLEY T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,203(3):207-237.
DOI URL |
[9] |
KIEHL J T, SHIELDS C A. Climate simulation of the latest Permian: Implications for mass extinction[J]. Geology, 2005,33(9):757-760.
DOI URL |
[10] | 柴之芳, 马淑兰, 毛雪瑛, 等. 浙江长兴二叠系/三叠系界线剖面的元素地球化学特征[J]. 地质学报, 1986,60(2):27-38. |
[11] |
KATO Y, NAKAO K, ISOZAKI Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change[J]. Chemical Geology, 2002,182(1):15-34.
DOI URL |
[12] |
JANOS H, ATTILA D, KINGA H, et al. Carbon isotope excursions and microfacies changes in marine Permian-Triassic boundary sections in Hungary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,237(2/4):160-181.
DOI URL |
[13] |
KORTE C, Kozur H W. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review[J]. Journal of Asian Earth Sciences, 2010,39(4):215-235.
DOI URL |
[14] | HERMANN E, HOCULI P A, BUCHER H, et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform)[J]. Global & Planetary Change, 2010,74(3/4):156-167. |
[15] | 彭元桥, 高勇群, 杨逢清, 等. 南非陆相二叠系—三叠系界线研究进展[J]. 地质科技情报, 2006,25(1):769-776. |
[16] | WANG S, PENG Y, YIN H. Study on a terrestrial Permian-Triassic boundary section-Zhejue Section, Weining County, Guizhou Province, China[J]. Journal of Earth Science, 2002,13(2):163-171. |
[17] | SMITH R, BOTHA J. The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction[J]. Comptes Rendus-Palevol, 2005,6:623-636. |
[18] | TABOR N J. Permo-Pennsylvanian palaeotemperatures from Fe-Oxide and phyllosilicate δ18O values[J]. Earth & Planetary Science Letters, 2007,253(1):159-171. |
[19] |
WILLIAMS M L, JONES B G, CARR P F. Geochemical consequences of the Permian-Triassic mass extinction in a non-marine succession, Sydney Basin, Australia[J]. Chemical Geology, 2012,326/327:174-188.
DOI URL |
[20] |
REY K, AMIOT R, FOUREL F, et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research, 2015,37:384-396.
DOI URL |
[21] | 殷鸿福, 林和茂. 陕西渭北地区三叠纪海相化石层并论石千峰群的时代[J]. 地层学杂志, 1979,3(4):3-11. |
[22] |
MACLEOD K G, SMITH R M H, KOCH P L, et al. Timing of mammal-like reptile extinctions across the Permian-Triassic boundary in South Africa[J]. Geology, 2000,28(3):227-230.
DOI URL |
[23] | 楚道亮, 缪雪, 呈玉祥, 等. 陕西渭北二叠纪—三叠纪之交叶肢介化石及其地层对比[J]. 地球科学, 2018,43(11):3910-3921. |
[24] | 朱志才, 柳永清, 旷红伟, 等. 山西陆相晚二叠世-早、中三叠世时期的沉积环境[M] //中国地质学会沉积地质专业委员会.2015年全国沉积学大会沉积学与非常规资源论文摘要集.武汉:长江大学, 2015: 2. |
[25] | 何自新. 鄂尔多斯盆地演化与油气[M]. 北京: 石油工业出版社, 2003: 3-12. |
[26] | 杨友运. 鄂尔多斯盆地南部延长组沉积体系和层序特征[J]. 地质通报, 2005,24(4):369-372. |
[27] | 王宏波, 郑希民, 冯明. 鄂尔多斯盆地三叠系延长组层序地层与生储盖组合特征[J]. 天然气地球科学, 2006,17(5):35-40. |
[28] | 白云来, 王新民, 刘化清, 等. 鄂尔多斯盆地西部边界的确定及其地球动力学背景[J]. 地质学报, 2006,80(6):792-813. |
[29] | 邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005,19(4):538-545. |
[30] | 张福礼. 鄂尔多斯盆地天然气地质[M]. 北京: 地质出版社, 1994: 4-13. |
[31] | 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京: 石油工业出版社, 2002: 3-16. |
[32] | 赵重远. 华北克拉通沉积盆地形成与演化及其油气赋存[M]. 西安: 西北大学出版社, 1990: 1-5. |
[33] | 谢渊. 鄂尔多斯盆地东南部延长组湖盆致密砂岩储层层序地层与油气勘探[M]. 北京: 地质出版社, 2004: 1-15. |
[34] | 杨遵仪, 殷鸿福, 林和茂. 陕西渭北石千峰群的海相化石[J]. 古生物学报, 1979,18(5):53-62. |
[35] | 张抗. 鄂尔多斯盆地南缘三叠纪海相层及有关问题的讨论[J]. 科学通报, 1983,28(1):41. |
[36] |
GALDBERG E D, ARRHENIUS G O S. Chemistry of Pacific pelagic sediments[J]. Geochimica et Cosmochimica Acta, 1958,13(2/3):153-212.
DOI URL |
[37] | NECHAEV V P. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments[J]. Journal of Sedimentary Petrology, 1993,63(6):1110-1117. |
[38] | 丁仲礼, 熊尚发. 古气候数值模拟:进展评述[J]. 地学前缘, 2006,13(1):21-31. |
[39] | 陈道公. 地球化学[M]. 合肥: 中国科学技术大学出版社, 2009: 112-154. |
[40] | 高莲凤, 周巍, 张盈, 等. 藏南贡嘎晚侏罗世—早白垩世海相地层地球化学特征与古海洋环境演化[J]. 地学前缘, 2017,24(1):195-204. |
[41] | 贾鹏, 李伟, 卢远征, 等. 四川盆地中南部地区洗象池群沉积旋回的碳氧同位素特征及地质意义[J]. 现代地质, 2016,30(6):1329-1338. |
[42] | 郭来源, 李忠生, 解习农, 等. 湖相富有机质泥页岩地球化学元素高频变化及其地质意义:以泌阳凹陷 BY1井取心段为例[J]. 现代地质, 2015,29(6):1360-1370. |
[43] | 孙勇. 云南西北早白垩世环境与气候分析[D]. 成都:成都理工大学, 2012. |
[44] |
NELSON B W. Sedimentary phosphate method for estimating paleosalinities[J]. Science, 1967,158:917-920.
DOI URL |
[45] | 王敏芳, 黄传炎, 徐志诚, 等. 综述沉积环境中古盐度的恢复[J]. 新疆石油天然气, 2006,2(1):9-12. |
[46] | 赵明, 季峻峰, 陈小明, 等. 古盐度对塔北隆起泥岩中粘土矿物组合和绿泥石成分的影响[J]. 高校地质学报, 2015,21(3):365-375. |
[47] | 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版), 1979,7(2):54-63. |
[48] | ERNST W. Geochemical Facies Analysis[M]. Amsterdam:Elsvier, 1970: 1-5. |
[49] | 曹长群, 王伟, 金玉. 浙江煤山二叠-三叠系界线附近碳同位素变化[J]. 科学通报, 2002,47(4):302-306. |
[50] |
XIE S, PANCOST R D, HUANG J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007,35(12):1083.
DOI URL |
[51] |
HORACEK M, BRANDNER R, ABART R. Carbon isotope record of the P/T boundary and the Lower Triassic in the Southern Alps: Evidence for rapid changes in storage of organic carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,252(1/2):347-354.
DOI URL |
[52] | HANDLEY L, PEARSON P N, MCMILLAN I K, et al. Large terrestrial and marine carbon and hydrogen isotope excursions in a new Paleocene/Eocene boundary section from Tanzania[J]. Earth & Planetary Science Letters, 2008,275(1/2):17-25. |
[53] |
FIO K, SPANGENBERG J E, VLAHOVIC I, et al. Stable isotope and trace element stratigraphy across the Permian-Triassic transition: A redefinition of the boundary in the Velebit Mountain, Croatia[J]. Chemical Geology, 2010,278(1/2):38-57.
DOI URL |
[54] |
TAKAHASHI S, KAIHO K, OBA M, et al. A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010,292(3/4):532-539.
DOI URL |
[55] |
YIN H F, XIE S, LUO G, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012,115(3):163-172.
DOI URL |
[56] | YIN H, YANG F, YU J, et al. An accurately delineated Permian-Triassic boundary in continental successions[J]. Science in China Series D: Earth Sciences, 2007,50(9):1281-1292. |
[57] |
JIN Y G. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000,289:432-436.
DOI URL |
[58] |
TAKAHASHI S, OBA M, KAIHO K, et al. Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology,Palaeoecology, 2009,274(3):185-195.
DOI URL |
[59] | ERWIN D H, BOWRING S A, JIN Y. End-Permian mass extinctions: A review[J]. Special Paper of the Geological Society of America, 2002,356:1-6. |
[60] |
HIETE M, ROHLING H, HEUNISCH C, et al. Facies and climate changes across the Permian-Triassic boundary in the North German Basin: insights from a high-resolution organic carbon isotope record[J]. Geological Society, London, Special Publications, 2013,376(1):549-574.
DOI URL |
[61] |
SHEN J, ALGEO T J, HU Q, et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism[J]. Geology, 2012,40(11):963-966.
DOI URL |
[62] |
WANG R, ZHANG S, BRASSELL S, et al. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China[J]. International Journal of Earth Sciences, 2012,101(5):1397-1406.
DOI URL |
[63] |
HASEGAWA T. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: Increased atmospheric $p_{co_{2}}$-induced climate[J]. Journal of Asian Earth Sciences, 2003,21(8):849-859.
DOI URL |
[64] |
HARRINGTON G J, CLECHENKO E R, CLAY K D. Palynology and organic-carbon isotope ratios across a terrestrial Palaeocene/Eocene boundary section in the Williston Basin, North Dakota, USA[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2005,226(3/4):214-232.
DOI URL |
[65] |
MU X, KERSHAW S, LI Y, et al. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China: implications for control and growth of earliest Triassic microbialites[J]. Journal of Asian Earth Sciences, 2009,36(6):434-441.
DOI URL |
[66] | 伊海生, 时志强, 惠博, 等. 湖相叠层石纹层的碳氧同位素特征及其生长节律的古环境意义[J]. 地学前缘, 2009,16(6):168-176. |
[67] | 孙国强, 王海峰, 邹开真, 等. 柴北缘九龙山地区侏罗系砂岩中碳酸盐胶结物特征及意义[J]. 天然气地球科学, 2014,25(9):1358-1365. |
[68] | 贾艳艳, 邢学军, 孙国强, 等. 柴北缘西段古—新近纪古气候演化[J]. 地球科学——中国地质大学学报, 2015,40(12):1955-1967. |
[69] | 韩元红, 马海州, 张西营, 等. 老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示[J]. 大地构造与成矿学, 2015,39(2):334-343. |
[1] | ZHANG Yifan, GAO Yuan, CHEN Jiquan, HUANG Shuai, HAI Lun, WU Zhengxuan, YANG Liu, DONG Tian. Carbon and Oxygen Isotope Characteristics of Late Cretaceous Lacustrine Dolomite in the Songliao Basin and their Paleoenvironmental Implications [J]. Geoscience, 2023, 37(05): 1243-1253. |
[2] | SHI Liang, FAN Bojiang, WANG Xia, LI Yating, HUANG Feifei, DAI Xinyang. Element Composition and Sedimentary Environment of Chang 9 Shale Source Rocks in the Ordos Basin [J]. Geoscience, 2023, 37(05): 1254-1263. |
[3] | CHEN Xi, XIAO Ling, WANG Mingyu, HAO Chenxi, WANG Feng, TANG Hongnan. Reconstruction of Provenance and Paleo-sedimentary Environment of the Chang 8 Oil Layer in the Southwestern Margin of the Ordos Basin: Evidence from Petrogeochemistry [J]. Geoscience, 2023, 37(05): 1264-1281. |
[4] | ZHU Ting, HE Zhengwei, YANG Zhenjing, KANG Guichuan, GUAN Sensen, ZHU Yuting. Middle Late-Pleistocene Sporopollen Records of Ake River III Terrace in Southern Margin of Aba Basin, Western Sichuan [J]. Geoscience, 2023, 37(04): 870-880. |
[5] | LIU Xiaohong. Sedimentary Characteristics of Late Quaternary Loess in Hexigten Global Geopark and Its Paleoclimatic Implications [J]. Geoscience, 2023, 37(03): 821-833. |
[6] | CUI Shuhui, WU Peng, ZHAO Fei, NIU Yanwei, CAI Wenzhe, WANG Bo. Shale Gas Accumulation Factors and Enrichment Area Prediction in Linxing Block, Eastern Margin of the Ordos Basin [J]. Geoscience, 2022, 36(05): 1271-1280. |
[7] | ZHENG Qinghua, LIU Xingjun, ZHANG Xiaolong, WANG Hongjun, LIAO Yongle, AN Erliang, LIU Tao, ZHANG Jianna, ZUO Qin. Review of the High Natural Gamma Sandstones Associated With Source Rocks in the Chang 73 Submember of the Yanchang Formation, Ordos Basin [J]. Geoscience, 2022, 36(04): 1087-1094. |
[8] | JIANG Zhongfa, JIANG Mengya, CHEN Hailong, LIU Longsong, WANG Xueyong, BIAN Baoli, LI Na. Thermal and Paleoenvironment Evolution of the Fengcheng Formation of Permian in Mahu Depression, Junggar Basin [J]. Geoscience, 2022, 36(04): 1118-1130. |
[9] | BAI Xiangyu, MA Junwei, XIA Qingping, TAN Xianfeng, LI Kaikai. Geochemistry of Carbonates Near the Cambrian Series 3-Furongian Boundary and Its Paleoenvironmental Constraints [J]. Geoscience, 2022, 36(02): 729-741. |
[10] | ZHU Biqing, CHEN Shijia, BAI Yanjun, LEI Junjie, YIN Xiangdong. Geochemical Characteristics and Source of Crude Oil in Chang 8 Member of Yanchang Formation, Ganquan Area, Ordos Basin [J]. Geoscience, 2022, 36(02): 742-754. |
[11] | WANG Xianglian, HUANG Ting, XIAO He, WU Daishe, ZHANG Xiaolong, CHENG Shenggao, MAO Xumei. Magnetic Susceptibility of Hani Peat Sediments in Northeast China and Its Paleoclimate Significance [J]. Geoscience, 2021, 35(05): 1323-1331. |
[12] | SHI Liang, ZHAO Tongtong, ZHA Hui, WANG Yanyan, HUO Pingping, FAN Bojiang. Geochemical Characteristics and Shale Oil Potential of Shale in the Yan’an Area [J]. Geoscience, 2021, 35(04): 1043-1053. |
[13] | CUI Gaixia, WEI Qinlian, XIAO Ling, WANG Song, HU Rong, WANG Chonghuan. Reservoir Characteristics of Permian Lower He 8 Member in Longdong Area, Ordos Basin [J]. Geoscience, 2021, 35(04): 1088-1097. |
[14] | LEI Han, HUANG Wenhui, SUN Qilong, CHE Qingsong. Dedolomitization Origin and Model for the Ordovician Majiagou Formation (5th Member) in the Southern Ordos Basin [J]. Geoscience, 2021, 35(02): 378-387. |
[15] | HU Yan, HU Yongxing, ZHANG Xiang, YANG Tao, OU Yangjian. Geochemical Features and Geological Significance of Sandstone-type Uranium Deposit in Zhenyuan Area, Southwestern Ordos Basin [J]. Geoscience, 2020, 34(06): 1153-1165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||