Geoscience ›› 2019, Vol. 33 ›› Issue (02): 345-356.DOI: 10.19657/j.geoscience.1000-8527.2019.02.10
• Geophysics • Previous Articles Next Articles
REN Xianzhuo1(), LINDEN Joost van der2, NARSILIO Guillermo2
Received:
2018-11-13
Revised:
2019-01-05
Online:
2019-05-08
Published:
2019-05-08
CLC Number:
REN Xianzhuo, LINDEN Joost van der, NARSILIO Guillermo. Developing a Pore Network Construction Algorithm for Computerized Tomography Images of Geomaterials[J]. Geoscience, 2019, 33(02): 345-356.
[1] | SILVEIRA A. A method for determining the void size distribution curve for filter materials[M]// BRAUNS J,HEIBAUM M,SCHULER U. Filters in Geotechnical and Hydraulic Engineering.Karlsrule:International Conference Committee on Filters and Filtration Phenomena in Geotechnical Engineering, 1993: 71-74. |
[2] | LOCKE M, INDRARATNA B. A new model for the behaviour of granular filters[M]// Faculty of Engineering and Information Sciences of University of Western Australia. Proceedings of Fourth Australia New Zealand Young Geotechnical Professionals Conference. Perth: University of Western Australia, 2000: 147. |
[3] | SILVEIRA A, DE LORENA PEIXOTO T, NOGUEIRA J. On void size distribution of granular materials[M]// Committee of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering.Proceedings of the 5th Pan-American conference on Soil Mechanics and Foundation Engineering. Buenos Aires: Committee of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering, 1975: 161-177. |
[4] | DONG H, TOUATI M, BLUNT M J. Pore network modeling: Analysis of pore size distribution of Arabian core samples[M]// SPE.Pore Network Modeling: Analysis of Pore Size Distribution of Arabian Core Samples. Richardson:Society of Petroleum Engineers, 2007: 1-5. |
[5] |
LINDQUIST W B. Investigating 3D geometry of porous media from high resolution images[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999,24(7):593-599.
DOI URL |
[6] | LINDQUIST W B, VENKATARANGAN A, DUNSMUIR J, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research: Solid Earth, 2000,105(B9):21509-21527. |
[7] |
BILTREYS T, DE BOEVER W, CNUDDE V. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 2016,155:93-128.
DOI URL |
[8] |
SILIN D, PATZEK T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and Its Applications, 2016,371(2):336-360.
DOI URL |
[9] |
TAYLOR H F, O’SULLIVAN C, SIM W W. A new method to identify void constrictions in micro-CT images of sand[J]. Computers and Geotechnics, 2015,69:279-290.
DOI URL |
[10] | LINDQUIST W B, LEE S M, COKER D A, et al. Medial axis analysis of void structure in three-dimensional tomographic images of porous media[J]. Journal of Geophysical Research: Solid Earth, 1996,101(B4):8297-8310. |
[11] | HUNT A, EWING R, GHANBARIAN B. Percolation Theory for Flow in Porous Media[M]. New York:Springer, 2014: 1-466. |
[12] |
JONES A C, ARNS C H, SHEPPARD A P H, et al. Assessment of bone ingrowth into porous biomaterials using MICRO-CT[J]. Biomaterials, 2007,28(15):2491-2504.
DOI URL PMID |
[13] |
MENDOZA F, VERBOVEN P, MEBATSION H K, et al. Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography[J]. Planta, 2007,226(3):559-570.
DOI URL PMID |
[14] |
PUDNEY C. Distance-ordered homotopic thinning: a skeletonization algorithm for three-dimensional digital images[J]. Computer Vision and Image Understanding, 1998,72(3):404-413.
DOI URL |
[15] |
BORGEFORS G. On digital distance transforms in three dimensions[J]. Computer Vision and Image Understanding, 1996,64(3):368-376.
DOI URL |
[16] | SOILLE P, VINCENT L M. Determining watersheds in digital pictures via flooding simulations[J]. Journal of International Society for Optics and Photonics, 1990,1360:240-250. |
[17] |
LEE T C, KASHYAP R L, CHU C N. Building skeleton models via 3-D medial surface axis thinning algorithms[J]. Graphical Models and Image Processing, 1994,56(6):462-478.
DOI URL |
[18] |
COEURJOLLY D, MONTANVERT A. Optimal separable algorithms to compute the reverse Euclidean distance transformation and discrete medial axis in arbitrary dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(3):437-448.
URL PMID |
[19] | BLUM H. A transformation for extracting new descriptors of shape[J]. Models for the Perception of Speech and Visual Form, 1967,19(5):362-380. |
[20] | FATT L. The network model of porous media[J]. Transactions of the American Institute of Mining and Metallurgical Engineers, 1956,207(7):164-181. |
[21] |
CELIA M, REEVES P, FERRAND L. Recent advances in pore scale models for multiphase flow in porous media[J]. Reviews of Geophysics, 1995,33:1049-1057.
DOI URL |
[22] |
DOUBE M, KŁOSOWSKI M M, ARGANDA-CARRERAS I, et al. BoneJ: free and extensible bone image analysis in Image[J][J]. Bone, 2010,47(6):1076-1079.
URL PMID |
[23] |
ZAKIROV T R, GALEEV A A, KOROLEV E A, et al. Flow properties of sandstone and carbonate rocks by X-ray computed tomography[J]. Current Science, 2016,110(11):2142.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||