Geoscience ›› 2019, Vol. 33 ›› Issue (01): 235-245.DOI: 10.19657/j.geoscience.1000-8527.2019.01.23
• Engineering Geology • Previous Articles Next Articles
LI Zetong1,2(), WANG Tao1(
), ZHOU Yang3, LIU Jiamei1, XIN Peng1
Received:
2018-05-03
Revised:
2018-11-30
Online:
2019-02-26
Published:
2019-02-28
Contact:
WANG Tao
CLC Number:
LI Zetong, WANG Tao, ZHOU Yang, LIU Jiamei, XIN Peng. Landslide Susceptibility Assessment Based on Information Value Model, Logistic Regression Model and Their Integrated Model: A Case in Shatang River Basin, Qinghai Province[J]. Geoscience, 2019, 33(01): 235-245.
影响因素 | 因素区间范围 | 信息量 | 影响因素 | 因素区间范围 | 信息量 | ||
---|---|---|---|---|---|---|---|
地形因素 | 坡度/(°) | 0~4.37 | -3.079 | 地层因素 | 岩性 | N1x | 0.569 |
4.37~9.58 | -0.191 | E3m | 0.487 | ||||
9.58~13.54 | 0.088 | E2h | 0.243 | ||||
13.54~16.87 | 0.290 | 植被因素 | NDVI | 0.41~0.53 | -1.510 | ||
16.87~20.00 | 0.370 | 0.53~0.60 | 0.028 | ||||
20.00~23.12 | 0.357 | 0.60~0.64 | 0.113 | ||||
23.12~26.45 | 0.335 | 0.64~0.68 | -0.057 | ||||
26.45~30.20 | 0.300 | 0.68~0.72 | 0.060 | ||||
30.20~35.20 | 0.202 | 0.72~0.76 | 0.095 | ||||
35.20~53.32 | 0.234 | 0.76~0.80 | 0.073 | ||||
坡向 | 平地 | -2.924 | 0.80~0.84 | -0.096 | |||
N | 0.097 | 0.84~0.90 | -0.067 | ||||
NE | 0.244 | 0.90~0.98 | -0.765 | ||||
E | -0.027 | 河流侵 蚀因素 | 距主流距离 /m | 0~300 | -1.252 | ||
SE | -0.383 | 300~600 | -0.136 | ||||
S | 0.100 | 600~900 | 0.253 | ||||
SW | 0.093 | 900~1 200 | 0.366 | ||||
W | -0.039 | 1 200~1 500 | 0.314 | ||||
NW | -0.077 | 1 500~1 800 | -0.178 | ||||
起伏度 /m | 3.03~52.69 | -9.625 | 1 800~2 100 | -0.123 | |||
52.69~112.63 | -4.648 | 2 100~2 400 | 0.145 | ||||
112.63~158.87 | -1.474 | 2 400~2 700 | 0.257 | ||||
158.87~189.70 | -0.414 | >2 700 | 0.710 | ||||
189.70~215.39 | 0.093 | 距支流距离 /m | 0~102.85 | 0.095 | |||
215.39~239.37 | 0.241 | 102.85~219.42 | 0.042 | ||||
239.37~265.06 | 0.444 | 219.42~335.98 | -0.024 | ||||
265.06~294.17 | 0.725 | 335.98~452.55 | -0.024 | ||||
294.17~335.27 | 0.667 | 452.55~569.12 | -0.085 | ||||
335.27~441.46 | 0.849 | 569.12~692.54 | -0.130 | ||||
地层因素 | 岩性 | Q4 | -2.348 | 692.54~829.68 | -0.135 | ||
Q2 | -0.485 | 829.68~1 001.10 | -0.053 | ||||
N1xn | 0.501 | 1 001.10~1 234.23 | 0.067 | ||||
N1c | -0.346 | 1 234.23~1 741.64 | 0.299 |
Table 1 Results of information values
影响因素 | 因素区间范围 | 信息量 | 影响因素 | 因素区间范围 | 信息量 | ||
---|---|---|---|---|---|---|---|
地形因素 | 坡度/(°) | 0~4.37 | -3.079 | 地层因素 | 岩性 | N1x | 0.569 |
4.37~9.58 | -0.191 | E3m | 0.487 | ||||
9.58~13.54 | 0.088 | E2h | 0.243 | ||||
13.54~16.87 | 0.290 | 植被因素 | NDVI | 0.41~0.53 | -1.510 | ||
16.87~20.00 | 0.370 | 0.53~0.60 | 0.028 | ||||
20.00~23.12 | 0.357 | 0.60~0.64 | 0.113 | ||||
23.12~26.45 | 0.335 | 0.64~0.68 | -0.057 | ||||
26.45~30.20 | 0.300 | 0.68~0.72 | 0.060 | ||||
30.20~35.20 | 0.202 | 0.72~0.76 | 0.095 | ||||
35.20~53.32 | 0.234 | 0.76~0.80 | 0.073 | ||||
坡向 | 平地 | -2.924 | 0.80~0.84 | -0.096 | |||
N | 0.097 | 0.84~0.90 | -0.067 | ||||
NE | 0.244 | 0.90~0.98 | -0.765 | ||||
E | -0.027 | 河流侵 蚀因素 | 距主流距离 /m | 0~300 | -1.252 | ||
SE | -0.383 | 300~600 | -0.136 | ||||
S | 0.100 | 600~900 | 0.253 | ||||
SW | 0.093 | 900~1 200 | 0.366 | ||||
W | -0.039 | 1 200~1 500 | 0.314 | ||||
NW | -0.077 | 1 500~1 800 | -0.178 | ||||
起伏度 /m | 3.03~52.69 | -9.625 | 1 800~2 100 | -0.123 | |||
52.69~112.63 | -4.648 | 2 100~2 400 | 0.145 | ||||
112.63~158.87 | -1.474 | 2 400~2 700 | 0.257 | ||||
158.87~189.70 | -0.414 | >2 700 | 0.710 | ||||
189.70~215.39 | 0.093 | 距支流距离 /m | 0~102.85 | 0.095 | |||
215.39~239.37 | 0.241 | 102.85~219.42 | 0.042 | ||||
239.37~265.06 | 0.444 | 219.42~335.98 | -0.024 | ||||
265.06~294.17 | 0.725 | 335.98~452.55 | -0.024 | ||||
294.17~335.27 | 0.667 | 452.55~569.12 | -0.085 | ||||
335.27~441.46 | 0.849 | 569.12~692.54 | -0.130 | ||||
地层因素 | 岩性 | Q4 | -2.348 | 692.54~829.68 | -0.135 | ||
Q2 | -0.485 | 829.68~1 001.10 | -0.053 | ||||
N1xn | 0.501 | 1 001.10~1 234.23 | 0.067 | ||||
N1c | -0.346 | 1 234.23~1 741.64 | 0.299 |
系数 | 常数项b0 | 坡度b1 | 坡向b2 | 起伏度b3 | 与干流距离b4 | 与支流距离b5 | 岩性b6 | NDVI b7 |
---|---|---|---|---|---|---|---|---|
系数值 | -4.336 | 0.809 | 0.446 | 2.087 | 0.824 | 0.765 | 1.355 | 0.657 |
Sig | 0 | 0 | 0.043 | 0 | 0 | 0 | 0 | 0.001 |
Table 2 Logistic regression coefficient values of influence factors
系数 | 常数项b0 | 坡度b1 | 坡向b2 | 起伏度b3 | 与干流距离b4 | 与支流距离b5 | 岩性b6 | NDVI b7 |
---|---|---|---|---|---|---|---|---|
系数值 | -4.336 | 0.809 | 0.446 | 2.087 | 0.824 | 0.765 | 1.355 | 0.657 |
Sig | 0 | 0 | 0.043 | 0 | 0 | 0 | 0 | 0.001 |
系数 | 常数项c0 | 坡度c1 | 坡向c2 | 起伏度c3 | 与干流距离c4 | 与支流距离c5 | 岩性c6 | NDVIc7 |
---|---|---|---|---|---|---|---|---|
系数值 | -1.184 | 0.051 | 0.298 | 0.481 | 0.179 | 0.069 | 0.627 | 0.299 |
Sig | 0.000 | 0.000 | 0.044 | 0.000 | 0.009 | 0.015 | 0.000 | 0.001 |
Table 3 Logistic regression coefficient values of influence factors in the new integrated model
系数 | 常数项c0 | 坡度c1 | 坡向c2 | 起伏度c3 | 与干流距离c4 | 与支流距离c5 | 岩性c6 | NDVIc7 |
---|---|---|---|---|---|---|---|---|
系数值 | -1.184 | 0.051 | 0.298 | 0.481 | 0.179 | 0.069 | 0.627 | 0.299 |
Sig | 0.000 | 0.000 | 0.044 | 0.000 | 0.009 | 0.015 | 0.000 | 0.001 |
[1] | 王念秦, 张倬元. 黄土滑坡灾害研究[M]. 兰州: 兰州大学出版社, 2005: 1-10. |
[2] | XU X Z, GUO W Z, LIU Y K, et al. Landslides on the loess plateau of China: a latest statistics together with a close look[J]. Natural Hazards, 2017,86:1393-1403. |
[3] | 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京: 科学出版社, 2008: 1-20. |
[4] | FELL R, COROMINAS J, BONNARD C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning[J]. Engineering Geology, 2008,102:99-111. |
[5] | COROMINAS J, WESTEN C, FRATTINI P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2013,73(2):209-263. |
[6] | FEIZIZADEH B, BLASCHKE T. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping[J]. Geographical Information Science, 2014,28(3):610-638. |
[7] | MONDAL S, MAITI R. Landslide susceptibility analysis of Shiv-Khola Watershed, Darjiling: A remote sensing & GIS based analy-tical hierarchy process (AHP)[J]. Journal of the Indian Society of Remote Sensing, 2012,40(3):483-496. |
[8] | MYRONIDIS D, PAPAGEORGIOU C, THEOPHANOUS S. Landslide susceptibility mapping based on landslide history and analytic hierarchy process(AHP)[J]. Natural Hazards, 2016,81:245-263. |
[9] | ABEDINI M, GHASEMYAN B, REZAEI MOGADDAM M H. Landslide susceptibility mapping in Bijar city, Kurdistan Province, Iran: a comparative study by logistic regression and AHP models[J]. Environmental Earth Sciences, 2017,76:10-14. |
[10] | SOETERS R, VAN WESTEN C J. Slope instability recognition, analysis, and zonation[J]. Transport Research Board Special Report, 1996,247:129-177. |
[11] | 许冲, 戴福初, 徐素宁, 等. 基于逻辑回归模型的汶川地震滑坡危险性评价与检验[J]. 水文地质工程地质, 2013,40(3):98-104. |
[12] | BAI S B, WANG J, GUO N L, et al. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China[J]. Geomorphology, 2010,115:23-31. |
[13] | LEE S, JOONG S W, JEON S, et al. Spatial landslide hazard prediction using rainfall probability and a logistic regression model[J]. Math Geosciences, 2015,47:565-589. |
[14] | SARKAR S, ARCHANA K, ROY, et al. Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas[J]. Journal of Geological Society of India, 2013,82:253-262. |
[15] | YILMAZ I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides(Tokat-Turkey)[J]. Computers & Geosciences, 2009,35(6):1125-1138. |
[16] | YILMAZ I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Sciences, 2010,61(4):821-836. |
[17] | LINA G F, CHANGA M J, HUANG Y C, et al. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression[J]. Engineering Geology, 2017,224:62-74. |
[18] | 王佳佳, 殷坤龙, 肖莉莉. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014,33(4):797-808. |
[19] | 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016,35(2):284-295. |
[20] | 沈玲玲, 刘连友, 许冲, 等. 基于多模型的滑坡易发性评价——以甘肃岷县地震滑坡为例[J]. 工程地质学报, 2016,24(1):19-28. |
[21] | 范林峰, 胡瑞林, 曾逢春, 等. 加权信息量模型在滑坡易发性评价中的应用——以湖北省恩施市为例[J]. 工程地质学报, 2012,20(4):508-513. |
[22] | SHARMA L P, PATEL N, GHOSE M K, DEBNATH P. Development and application of shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India[J]. Natural Hazards, 2015,75(2):1555-1576. |
[23] | 丛威清, 潘懋, 李铁锋, 等. 基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J]. 地学前缘, 2006,13(1):185-90. |
[24] | 王进, 郭靖, 王卫东, 等. 权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J]. 中南大学学报(自然科学版), 2012,43(5):1932-1939. |
[25] | AYALEW L, YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J]. Geomorphology, 2005,65:15-31. |
[26] | DU G L, ZHANG Y S, IQBAL J, et al. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China[J]. Journal of Mountain Science, 2017,14(2):249-268. |
[27] | WU C Y, PENG J B, WANG M. Landslide and slope aspect in the Three Gorges Reservior area based on GIS and information value model[J]. Natural Sciences, 2013,11(4):773-779. |
[28] | MORELLO R, CAPUA C D, LUGARÀ M, et al. Risk model for landslide hazard assessment[J]. Measurement and Technology, 2014,8(3):129-134. |
[29] | 王涛, 胡秋韵, 张永双, 等. 汶川震区成兰铁路关键段多尺度滑坡危险性评估[J]. 地质力学学报, 2014,20(4):379-391. |
[30] | 杜国梁, 张永双, 高金川, 等. 基于GIS的白龙江流域甘肃段滑坡易发性评价[J]. 地质力学学报, 2016,22(1):1-11. |
[31] | 王珂, 郭长宝, 马施民, 等. 基于证据权模型的川西鲜水河断裂带滑坡易发性评价[J]. 现代地质, 2016,30(3):705-715. |
[32] | 刘筱怡, 杨志华, 郭长宝, 等. 基于SBAS-InSAR的鲜水河断裂带蠕滑型滑坡特征研究[J]. 现代地质, 2017,31(5):965-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||