Geoscience ›› 2024, Vol. 38 ›› Issue (05): 1370-1382.DOI: 10.19657/j.geoscience.1000-8527.2024.105
• Oil and Gas Exploration in Sedimentary Basin and Key Techniques • Previous Articles Next Articles
LIU Xian1,2,3(), XI Binbin1,2,3(
), CAO Tingting1,2,3, JIANG Qigui1,2,3, XU Jin1,2,3, ZHU Jianhui1,2,3
Online:
2024-10-10
Published:
2024-11-13
Contact:
XI Binbin
CLC Number:
LIU Xian, XI Binbin, CAO Tingting, JIANG Qigui, XU Jin, ZHU Jianhui. Phase Transformation Mechanisms and Controlling Factors of the Ultra-Deep Oil and Gas: Insights From Visual Thermal Simulation of Crude Oil[J]. Geoscience, 2024, 38(05): 1370-1382.
升温速率:0.1 ℃/min | 升温速率:0.7 ℃/min | 升温速率:5 ℃/min | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度*(%) | Ro (%) | 样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度(%) | Ro (%) | 样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度(%) | Ro (%) |
47 | 300 | 0.282 | 29.3 | / | 6 | 300 | 0.327 | 33.0 | / | 111 | 300 | 0.287 | 30.6 | / |
48 | 325 | 0.265 | 28.9 | / | 11 | 325 | 0.288 | 30.5 | / | 112 | 325 | 0.270 | 30.7 | / |
49 | 350 | 0.279 | 29.3 | / | 12 | 350 | 0.287 | 28.6 | / | 113 | 350 | 0.244 | 25.8 | / |
50 | 375 | 0.300 | 32.5 | 0.85 | 25 | 375 | 0.260 | 26.9 | / | 114 | 375 | 0.267 | 29.2 | / |
51 | 400 | 0.267 | 29.2 | 1.06 | 28 | 400 | 0.283 | 30.0 | 0.81 | 115 | 400 | 0.262 | 28.5 | / |
52 | 410 | 0.275 | 29.5 | 1.17 | 29 | 425 | 0.303 | 31.1 | 0.99 | 116 | 425 | 0.294 | 30.4 | / |
76 | 420 | 0.271 | 28.8 | 1.29 | 30 | 450 | 0.315 | 32.7 | 1.24 | 117 | 450 | 0.283 | 30.0 | 0.91 |
54 | 430 | 0.272 | 29.7 | 1.41 | 32 | 475 | 0.298 | 30.8 | 1.55 | 118 | 475 | 0.262 | 33.0 | 1.11 |
55 | 440 | 0.278 | 30.3 | 1.55 | 33 | 500 | 0.308 | 30.8 | 1.90 | 119 | 490 | 0.290 | 30.4 | 1.27 |
56 | 450 | 0.271 | 29.4 | 1.69 | 35 | 525 | 0.296 | 29.9 | 2.31 | 120 | 505 | 0.284 | 29.7 | 1.44 |
57 | 460 | 0.274 | 29.1 | 1.84 | 36 | 550 | 0.317 | 31.1 | 2.75 | 125 | 517 | 0.275 | 29.2 | 1.59 |
58 | 470 | 0.285 | 29.7 | 1.99 | 37 | 575 | 0.257 | 26.8 | 3.21 | 121 | 528 | 0.278 | 30.0 | 1.73 |
60 | 480 | 0.291 | 29.2 | 2.16 | 41 | 600 | 0.252 | 26.3 | 3.63 | 122 | 551 | 0.291 | 31.1 | 2.06 |
61 | 490 | 0.275 | 29.9 | 2.35 | 123 | 576 | 0.262 | 27.3 | 2.47 | |||||
62 | 500 | 0.251 | 27.2 | 2.54 | 124 | 601 | 0.264 | 27.2 | 2.90 | |||||
63 | 510 | 0.253 | 29.1 | 2.72 | ||||||||||
64 | 520 | 0.258 | 29.0 | 2.92 | ||||||||||
65 | 535 | 0.272 | 29.0 | 3.20 | ||||||||||
70 | 550 | 0.271 | 28.8 | 3.47 |
Table 1 Sampling temperature points, loaded oil masses, and oil filling percentages for ex-situ offline observations
升温速率:0.1 ℃/min | 升温速率:0.7 ℃/min | 升温速率:5 ℃/min | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度*(%) | Ro (%) | 样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度(%) | Ro (%) | 样品 号 | 模拟温 度(℃) | 装油量 (mg) | 油充填 度(%) | Ro (%) |
47 | 300 | 0.282 | 29.3 | / | 6 | 300 | 0.327 | 33.0 | / | 111 | 300 | 0.287 | 30.6 | / |
48 | 325 | 0.265 | 28.9 | / | 11 | 325 | 0.288 | 30.5 | / | 112 | 325 | 0.270 | 30.7 | / |
49 | 350 | 0.279 | 29.3 | / | 12 | 350 | 0.287 | 28.6 | / | 113 | 350 | 0.244 | 25.8 | / |
50 | 375 | 0.300 | 32.5 | 0.85 | 25 | 375 | 0.260 | 26.9 | / | 114 | 375 | 0.267 | 29.2 | / |
51 | 400 | 0.267 | 29.2 | 1.06 | 28 | 400 | 0.283 | 30.0 | 0.81 | 115 | 400 | 0.262 | 28.5 | / |
52 | 410 | 0.275 | 29.5 | 1.17 | 29 | 425 | 0.303 | 31.1 | 0.99 | 116 | 425 | 0.294 | 30.4 | / |
76 | 420 | 0.271 | 28.8 | 1.29 | 30 | 450 | 0.315 | 32.7 | 1.24 | 117 | 450 | 0.283 | 30.0 | 0.91 |
54 | 430 | 0.272 | 29.7 | 1.41 | 32 | 475 | 0.298 | 30.8 | 1.55 | 118 | 475 | 0.262 | 33.0 | 1.11 |
55 | 440 | 0.278 | 30.3 | 1.55 | 33 | 500 | 0.308 | 30.8 | 1.90 | 119 | 490 | 0.290 | 30.4 | 1.27 |
56 | 450 | 0.271 | 29.4 | 1.69 | 35 | 525 | 0.296 | 29.9 | 2.31 | 120 | 505 | 0.284 | 29.7 | 1.44 |
57 | 460 | 0.274 | 29.1 | 1.84 | 36 | 550 | 0.317 | 31.1 | 2.75 | 125 | 517 | 0.275 | 29.2 | 1.59 |
58 | 470 | 0.285 | 29.7 | 1.99 | 37 | 575 | 0.257 | 26.8 | 3.21 | 121 | 528 | 0.278 | 30.0 | 1.73 |
60 | 480 | 0.291 | 29.2 | 2.16 | 41 | 600 | 0.252 | 26.3 | 3.63 | 122 | 551 | 0.291 | 31.1 | 2.06 |
61 | 490 | 0.275 | 29.9 | 2.35 | 123 | 576 | 0.262 | 27.3 | 2.47 | |||||
62 | 500 | 0.251 | 27.2 | 2.54 | 124 | 601 | 0.264 | 27.2 | 2.90 | |||||
63 | 510 | 0.253 | 29.1 | 2.72 | ||||||||||
64 | 520 | 0.258 | 29.0 | 2.92 | ||||||||||
65 | 535 | 0.272 | 29.0 | 3.20 | ||||||||||
70 | 550 | 0.271 | 28.8 | 3.47 |
样品 号 | 起始温 度(℃) | 最高温 度(℃) | 结束温 度(℃) | 升/降温速率 (℃/min) | 装油质 量(mg) | 油充填 度(%) |
---|---|---|---|---|---|---|
69 | 25 | 490 | 25 | 0.7 | 0.105 | 28.3 |
95 | 25 | 496 | 25 | 0.7 | 0.045 | 12.4 |
96 | 25 | 120 | 25 | 0.7 | 0.316 | 73.5 |
98 | 25 | 345 | 25 | 0.7 | 0.313 | 74.3 |
102 | 25 | 325 | 25 | 0.7 | 0.339 | 85.7 |
106 | 25 | 475 | 25 | 0.7 | 0.263 | 68.0 |
130 | 25 | 496 | 25 | 0.7 | 0.230 | 61.5 |
132 | 25 | 496 | 25 | 0.7 | 0.122 | 30.7 |
Table 2 Temperature control procedure, loaded oil masses, oil filling percentage of samples for in-situobservations
样品 号 | 起始温 度(℃) | 最高温 度(℃) | 结束温 度(℃) | 升/降温速率 (℃/min) | 装油质 量(mg) | 油充填 度(%) |
---|---|---|---|---|---|---|
69 | 25 | 490 | 25 | 0.7 | 0.105 | 28.3 |
95 | 25 | 496 | 25 | 0.7 | 0.045 | 12.4 |
96 | 25 | 120 | 25 | 0.7 | 0.316 | 73.5 |
98 | 25 | 345 | 25 | 0.7 | 0.313 | 74.3 |
102 | 25 | 325 | 25 | 0.7 | 0.339 | 85.7 |
106 | 25 | 475 | 25 | 0.7 | 0.263 | 68.0 |
130 | 25 | 496 | 25 | 0.7 | 0.230 | 61.5 |
132 | 25 | 496 | 25 | 0.7 | 0.122 | 30.7 |
Fig.1 Samples of oil heated at a rate of 0.7 ℃/min were extracted at scheduled temperature points and cooled to room temperature in air (The images were captured under a stereomicroscope after cooling)
[1] | 吴鲜, 李丹, 朱秀香, 等. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响——以顺北5号走滑断裂带为例[J]. 石油实验地质, 2022, 44(3):402-412. |
[2] | 符慧, 王福全, 梁静献. 向下 “攀登”, 在地下珠峰寻找大突破: 探访塔里木盆地西北油田顺北油气田[J]. 中国石化, 2022(6): 34-35. |
[3] | 晏继发, 马安来, 李贤庆, 等. 金刚烷化合物在深层油气地球化学研究中的应用[J]. 现代地质, 2020, 34(4): 812-820. |
[4] | 杨宪彰, 能源, 徐振平, 等. 塔里木盆地三大构造旋回油气成藏特征[J]. 现代地质, 2024, 38(2): 287-299. |
[5] | 任战利, 崔军平, 祁凯, 等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2):22-30. |
[6] | HUANG W L, OTTEN G A. Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: Technique development and preliminary results[J]. Organic Geochemistry, 2001, 32(6): 817-830. |
[7] | 郑伦举, 王强, 秦建中, 等. 海相古油藏及可溶有机质再生烃气能力研究[J]. 石油实验地质, 2008, 30(4): 390-395. |
[8] | 李慧莉, 马安来, 蔡勋育, 等. 塔里木盆地顺北地区奥陶系超深层原油裂解动力学及地质意义[J]. 石油实验地质, 2021, 43(5): 818-825. |
[9] |
陈燕燕, 胡素云, 李建忠, 等. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
DOI |
[10] | 王晓涛, 王铜山, 李永新, 等. 储层介质环境对原油裂解生气影响的实验研究[J]. 地球化学, 2015, 44(2): 178-188. |
[11] | 肖七林, 孙永革, 张永东. 储层介质环境对深埋油藏原油热裂解影响的初步实验研究[J]. 科学通报, 2010, 55(29): 2844-2851. |
[12] | 姜兰兰, 潘长春, 刘金钟. 矿物对原油裂解影响的实验研究[J]. 地球化学, 2009, 38(2): 165-173. |
[13] | 田辉, 王招明, 肖中尧, 等. 原油裂解成气动力学模拟及其意义[J]. 科学通报, 2006, 51(15): 1821-1827. |
[14] |
陈大伟, 李剑, 国建英, 等. 砂岩介质下陆相原油裂解生气模拟[J]. 天然气地球科学, 2021, 32(4):518-528.
DOI |
[15] | WANG X L, SONG Y C, CHOU I M, et al. Raman spectroscopic characterization of cracking and hydrolysis of n-pentane and n-octadecane at 300-375℃ with geological implications[J]. Energy Exploration & Exploitation, 2018, 36(4): 955-970. |
[16] | 陈菊林, 张敏. 原油热模拟实验中重排藿烷类变化特征及其意义[J]. 现代地质, 2016, 30(4): 871-879. |
[17] | 陈中红, 张守春, 查明. 不同压力体系下原油裂解的地球化学演化特征[J]. 中国科学(地球科学), 2013, 43(11): 1807-1818. |
[18] | XIE L J, SUN Y G, UGUNA C N, et al. Thermal cracking of oil under water pressure up to 900 bar at high thermal maturities:1.gas compositions and carbon isotopes[J]. Energy & Fuels, 2016, 30(4): 2617-2627. |
[19] | HILL R J, TANG Y C, KAPLAN I R, et al. The influence of pressure on the thermal cracking of oil[J]. Energy & Fuels, 1996, 10(4): 873-882. |
[20] | BOUNACEUR R, LANNUZEL F, MICHELS R, et al. Influence of pressure (100 Pa-100 MPa) on the pyrolysis of an alkane at moderate temperature (603 K-723 K): Experiments and kinetic modeling[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 442-451. |
[21] |
邹艳荣, 魏志福, 陶伟, 等. 相态: 原油裂解成气模拟实验中的一个重要问题[J]. 天然气地球科学, 2010, 21(6): 980-988.
DOI |
[22] | CHOU I M, SONG Y C, BURRUSS R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5217-5231. |
[23] | JERRY J SWEENEY Burnham, ALAN K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
[24] | CLAYPOOL G E, MANCTNI. Geochemical relationships of petroleum in Mesozoic Reservoirs to carbonate source rocks of Jurassic smackover formation, southwestern Alabama[J]. AAPG Bulletin, 1989, 73: 904-924. |
[25] | XIONG Y Q, JIANG W M, WANG X T, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine and Petroleum Geology, 2016, 78: 70-75. |
[26] | GEORGE S C, RUBLE T E, DUTKIEWICZ A, et al. Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours[J]. Applied Geochemistry, 2001, 16(4): 451-473. |
[27] | BOURDET J, BURRUSS R C, CHOU I M, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142: 362-385. |
[28] | ZHU Y F, MULLINS O C. Temperature dependence of fluorescence of crude oils and related compounds[J]. Energy & Fuels, 1992, 6(5): 545-552. |
[29] |
陈红汉. 单个油包裹体显微荧光特性与热成熟度评价[J]. 石油学报, 2014, 35(3): 584-590.
DOI |
[30] | STASIUK L D, SNOWDON L R. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: Crude oil chemistry, density and application to petroleum migration[J]. Applied Geochemistry, 1997, 12(3): 229-241. |
[31] | 耿宏章, 秦积舜, 周开学, 等. 影响原油粘度因素的试验研究[J]. 青岛大学学报(工程技术版), 2003, 18(1):83-87. |
[32] | 苏奥, 陈红汉, 平宏伟. 次生作用对原油和油包裹体荧光颜色及光谱参数的影响[J]. 光谱学与光谱分析, 2015, 35(3): 668-673. |
[33] | BEHAR F, LORANT F, BUDZINSKI H, et al. Thermal stability of alkylaromatics in natural systems: Kinetics of thermal decomposition of dodecylbenzene[J]. Energy & Fuels, 2002, 16(4): 831-841. |
[34] | BEHAR F, LORANT F, MAZEAS L. Elaboration of a new compositional kinetic schema for oil cracking[J]. Organic Geochemistry, 2008, 39(6): 764-782. |
[35] | CHANG Y J, HUANG W L. Simulation of the fluorescence evolution of “live” oils from kerogens in a diamond anvil cell: Application to inclusion oils in terms of maturity and source[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3771-3787. |
[36] | 马安来, 金之钧, 刘金钟. 塔里木盆地寒武系深层油气赋存相态研究[J]. 石油实验地质, 2015, 37(6): 681-688. |
[37] | WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: Constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6): 553-575. |
[38] | QI Y, CAI C F, SUN P, et al. Crude oil cracking in deep reservoirs: A review of the controlling factors and estimation methods[J]. Petroleum Science, 2023, 20(4): 1978-1997. |
[39] |
陈强路, 席斌斌, 韩俊, 等. 塔里木盆地顺托果勒地区超深层油藏保存及影响因素: 来自流体包裹体的证据[J]. 中国石油勘探, 2020, 25(3): 121-133.
DOI |
[40] |
杨鹏, 刘可禹, LI Zhen, 等. 塔里木盆地跃参地区YJ1X井超深层油藏演化[J]. 石油勘探与开发, 2022, 49(2), 262-273.
DOI |
[41] |
曾帅, 邱楠生, 李慧莉, 等. 塔里木盆地顺托果勒地区奥陶系碳酸盐岩超压差异分布研究[J]. 地学前缘, 2023, 30(6): 305-315.
DOI |
[42] |
马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7):1047-1060.
DOI |
[43] | 席斌斌, 蒋宏, 许锦, 等. 基于包裹体PVTx数值模拟恢复油藏古温压——存在的问题、对策及应用实例[J]. 石油实验地质, 2021, 43(5), 886-895. |
[44] |
刘雨晨, 邱楠生, 常健, 等. 碳酸盐团簇同位素在沉积盆地热演化中的应用: 以塔里木盆地顺托果勒地区为例[J]. 地球物理学报, 2020, 63(2): 597-611.
DOI |
[1] | MA Licheng, JIANG Wan, SHI Hui, HU Junjie, ZHANG Hao, CHEN Cheng, DONG Min, PENG Bo, FANG Xinxin. Relationship Between Cenozoic Superimposed Folds and Hydrocarbon Migration in the Gahainanshan Area, Eastern Qaidam Basin, China [J]. Geoscience, 2024, 38(05): 1209-1220. |
[2] | TIAN Lanxi, ZHANG Guanjie, LEI Xin. Evaluation of Fault Sealing in the No.2 Fault Zone of the Qiongdongnan Basin [J]. Geoscience, 2024, 38(05): 1235-1247. |
[3] | JIANG Kunpeng, LIU Yalei, ZHOU Xingui, LIU Chengxin, CHENG Yan, DUAN Ye, BAI Zhongkai, ZHANG Yuanyin, MIAO Miaoqing. Fault Structural Characteristics of the Early Paleozoic in the Keping Fault-Uplift, Tarim Basin: A Case Study in the Southern Keping Area [J]. Geoscience, 2024, 38(05): 1248-1257. |
[4] | CAI Zhenzhong, XU Fan, YANG Guo, LI Hao, HU Fangjie, LIN Changsong. Sedimentary Characteristics of the Lower Cambrian Yuertusi Formation and the Organic Matter Enrichment Model in the Tarim Basin [J]. Geoscience, 2024, 38(05): 1258-1269. |
[5] | DING Meng, FAN Tailiang, WU Jun, LI Yu, LI Chenchen, LÜ Kaidi. Sedimentary Microfacies in a High-precision Sequence Stratigraphic Framework of the Yijianfang Formation in the T738 Well Area of the Tahe Oilfield, Tarim Basin [J]. Geoscience, 2024, 38(05): 1270-1290. |
[6] | LIU Xiaorui, LU Jungang, TAN Kaijun, LIAO Jianbo, LONG Liwen, CHEN Shijia, LI Yong, XIAO Zhenglu. Geochemical Characteristics and Oil Source Analysis of the Chang 7 and Chang 8 Members in the HQ Area, Southwestern Ordos Basin [J]. Geoscience, 2024, 38(05): 1306-1324. |
[7] | HE Xin, CHEN Shijia, HU Cong, ZHANG Haifeng, MOU Feisheng, LU Yifan, DAI Linfeng, FU Xiaoyan, HAN Meimei. Lithological Combination Model of the Continental Shale Series and Its Controls on Differential Crude Oil Enrichment: A Case Study of the Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin [J]. Geoscience, 2024, 38(05): 1325-1337. |
[8] | LI Xiaodong, LI Zhijun, LI Xiwei, MA Xuefeng, LI Xiaoyan, CHEN Ketong, ZHANG Jichao, XU Mengting, ZHANG Ruixue, QIN Menghua, WANG Chengyun, LIU Jia, ZHANG Jianmiao, SHI Qianqian, LI Sumei. Genetic Mechanism of Low-Maturity Oil in the Qingyuan Tectonic Belt, Baoding Sag, Jizhong Depression [J]. Geoscience, 2024, 38(05): 1338-1353. |
[9] | DENG Shuo, LI Sumei, CAO Jingtao, HUANG Taiming, LIU Jia, ZHANG Jianmiao, SHI Qianqian. High-Resolution Mass Spectrum Characteristics and Formation Mechanism of Low Maturity Oil in the Liaohe Western Depression [J]. Geoscience, 2024, 38(05): 1354-1369. |
[10] | ZHANG Zhaohui, LIU Xianzheng, FENG Yan, LI Hongliang, LI Lei, YANG Cai, XIA Ning, LU Zhenquan, ZHANG Yunbo, LIU Guo, SUN Li, LIN Ziyang, LI Qing. Geological Indicators of Permafrost-associated Gas Hydrates in the Labudalin Basin, Northeastern Inner Mongolia [J]. Geoscience, 2024, 38(05): 1383-1399. |
[11] | DONG Bo, CAO Daiyong, WEI Yingchun, WANG Anmin, LI Xin, ZHANG Yun. Advancements in Experimental Studies on the Tectonic Physical-chemical Mechanisms of Coal Metamorphism [J]. Geoscience, 2024, 38(04): 892-909. |
[12] | YU Huimin, SHEN Xiaoli, SU Huhu, JIA Wenchen, ZHANG Baolin, SU Jie. Application of Comprehensive Geophysical Exploration in the Lizichong Mining Area, Ailaoshan Tectonic Belt, Southwest Yunnan Province [J]. Geoscience, 2024, 38(04): 1054-1066. |
[13] | SHEN Yuke, GUO Tao, HAN Fengbin, XIAO Changhao, YAN Shaohua, LI Kang, LIU Weimin. Alteration Fractural System and Orebody Locating in the Linglong Gold Field [J]. Geoscience, 2024, 38(04): 1013-1025. |
[14] | YANG Xianzhang, NENG Yuan, XU Zhenping, LI Kuayue, HUANG Shaoying, DUAN Yunjiang. Characteristics of the Hydrocarbon Accumulation Formed Through the Three Structural Cycles in Tarim Basin [J]. Geoscience, 2024, 38(02): 287-299. |
[15] | ZHANG Zaizhen, ZENG Jianhui, ZHANG Benhua, WANG Zhiwei, LIU Jinhua, YU Shina, WU Qunhu, WANG Yanzhen. Neogene Volcanism and Its Petroleum Geological Significance in the Eastern Chengdao, Bohai Bay Basin [J]. Geoscience, 2024, 38(02): 312-321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||