Geoscience ›› 2024, Vol. 38 ›› Issue (04): 873-891.DOI: 10.19657/j.geoscience.1000-8527.2024.092
• Theories and Methods of Tectono-physicochemistry • Previous Articles Next Articles
ZHANG Longxiao1,2(), YANG Liqiang1,2,3,4(
), YANG Wei1,2, XIE Dong1,2
Online:
2024-08-10
Published:
2024-10-16
Contact:
YANG Liqiang
CLC Number:
ZHANG Longxiao, YANG Liqiang, YANG Wei, XIE Dong. Migration and Emplacement of Ore-forming Fluids and Their Structural Controlling Mechanisms: An Example from Jiaojia Gold Belt in Jiaodong Peninsula[J]. Geoscience, 2024, 38(04): 873-891.
矿床 | 流体包裹体的 均一温度(℃) | 流体包裹体盐 度特征(%) | 流体组成 | 流体来源 | 成矿压力 (bar) | 成矿深度 (km) | 主控矿 因素 | 资料来源 |
---|---|---|---|---|---|---|---|---|
MVT密西西比河谷型铅锌矿床 | 75~175 | 20±5 | 富含Pb、Zn,Cu等金属元素;挥发性组分为CO2、CH4 | 海水、部分大气降水 | 几百到上千巴之间 | 1~1.8 | 层控 | [26-27] |
VMS火山成因块状硫化物矿床 | 100~360 | 5~10 | 富含Cu、Pb、Zn等金属元素;挥发性组分为CO2、CH4、N2 | 海底热液:海水、岩浆热液 | / | / | 层控 | [28-29] |
浅成热液矿床 | 100~450 | 0~40 | 富含各种金属元素;挥发分为CO2、H2S、CH4、N2和SO2 | 岩浆热液、大气降水 | 100~500 | 1~1.5 | 断裂系统控制 | [30-31] |
斑岩型Cu-Mo矿 | 100~900 | 0~60 | 富含Cu、Mo、Na、K、Fe等金属元素的高盐度流体 | 岩浆热液 | 几十到几百巴,有时高达1000 bar左右 | 1~6 | 断裂系统控制 | [32-33] |
矽卡岩型矿床 | 100~600 | 0~60 | 富含W、Mo、Cu、Pb、Zn等金属元素 | 岩浆热液、变质热液、部分大气降水 | 不同类型的矽卡岩矿床有着不同的成矿压力 | 1~4.5 | 褶皱、断裂构造控制 | [4] |
卡林型金矿 | 100~300 | 0~7 | 富含以Au为主的各种金属元素;主要挥发分为CO2、H2S | 岩浆热液、变质热液、大气降水 | 不同类型的卡林型金矿有着不同的成矿压力 | 2 km左右,甚至达到数千米 | 层控 | [34-35] |
造山型金矿 | 150~350 | 0~10 | 富含Na、Ca、K、Mg等金属元素;为H2O-CO2-NaCl体系 | 岩浆热液、变质热液和深循环大气降水 | 500~1500 | 3~10 | 断裂系统控制 | [3,36] |
胶东型金矿 | 260~340 | 2~10 | 富含Na、K、Mg、Ca等金属元素;为H2O-CO2-NaCl-CH4体系 | 深部岩浆热液与大气水混合 | 900~2400 | 2~10 | 断裂系统控制 | [37-39] |
Table 1 List of ore-forming fluid properties and structural controls of various ore deposits
矿床 | 流体包裹体的 均一温度(℃) | 流体包裹体盐 度特征(%) | 流体组成 | 流体来源 | 成矿压力 (bar) | 成矿深度 (km) | 主控矿 因素 | 资料来源 |
---|---|---|---|---|---|---|---|---|
MVT密西西比河谷型铅锌矿床 | 75~175 | 20±5 | 富含Pb、Zn,Cu等金属元素;挥发性组分为CO2、CH4 | 海水、部分大气降水 | 几百到上千巴之间 | 1~1.8 | 层控 | [26-27] |
VMS火山成因块状硫化物矿床 | 100~360 | 5~10 | 富含Cu、Pb、Zn等金属元素;挥发性组分为CO2、CH4、N2 | 海底热液:海水、岩浆热液 | / | / | 层控 | [28-29] |
浅成热液矿床 | 100~450 | 0~40 | 富含各种金属元素;挥发分为CO2、H2S、CH4、N2和SO2 | 岩浆热液、大气降水 | 100~500 | 1~1.5 | 断裂系统控制 | [30-31] |
斑岩型Cu-Mo矿 | 100~900 | 0~60 | 富含Cu、Mo、Na、K、Fe等金属元素的高盐度流体 | 岩浆热液 | 几十到几百巴,有时高达1000 bar左右 | 1~6 | 断裂系统控制 | [32-33] |
矽卡岩型矿床 | 100~600 | 0~60 | 富含W、Mo、Cu、Pb、Zn等金属元素 | 岩浆热液、变质热液、部分大气降水 | 不同类型的矽卡岩矿床有着不同的成矿压力 | 1~4.5 | 褶皱、断裂构造控制 | [4] |
卡林型金矿 | 100~300 | 0~7 | 富含以Au为主的各种金属元素;主要挥发分为CO2、H2S | 岩浆热液、变质热液、大气降水 | 不同类型的卡林型金矿有着不同的成矿压力 | 2 km左右,甚至达到数千米 | 层控 | [34-35] |
造山型金矿 | 150~350 | 0~10 | 富含Na、Ca、K、Mg等金属元素;为H2O-CO2-NaCl体系 | 岩浆热液、变质热液和深循环大气降水 | 500~1500 | 3~10 | 断裂系统控制 | [3,36] |
胶东型金矿 | 260~340 | 2~10 | 富含Na、K、Mg、Ca等金属元素;为H2O-CO2-NaCl-CH4体系 | 深部岩浆热液与大气水混合 | 900~2400 | 2~10 | 断裂系统控制 | [37-39] |
[1] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 3版. 北京: 地质出版社, 2011: 1-417. |
[2] | ROBB L J. Introduction to Ore-forming Processes[M]. Malden: Blackwell Publication, 2005. |
[3] | GROVES D I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia[J]. Mineralium Deposita, 1993, 28(6): 366-374. |
[4] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[5] | BODNAR R J, LECUMBERRI-SANCHEZ P, MONCADA D, et al. Fluid inclusions in hydrothermal ore deposits[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 119-142. |
[6] | PHILLIPS G N. Geology and alteration in the golden Mile, Kalgoorlie[J]. Economic Geology, 1986, 81(4): 779-808. |
[7] | COX S F. Chapter 2: The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems[M]// Applied Structural Geology of Ore-forming Hydrothermal Systems.Society of Economic Geologists, 2020: 25-82. |
[8] | DENG J, WANG Q F, LIU X F, et al. The formation of the Jiaodong gold province[J]. Acta Geologica Sinica, 2022, 96(6): 1801-1820. |
[9] | DENG J, WANG Q F, ZHANG L, et al. Metallogenetic model of Jiaodong-type gold deposits, Eastern China[J]. Science China Earth Sciences, 2023, 66(10): 2287-2310. |
[10] | 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. |
[11] | DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, Eastern China[J]. Earth-Science Reviews, 2020, 208: 103274. |
[130] | DENG J, YANG L Q, SUN Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546. |
[131] | DENG J, WANG Q F. Gold mineralization in China: Metallogenic Provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. |
[132] | 张良. 胶西北金成矿系统热年代学[D]. 北京: 中国地质大学(北京), 2016. |
[133] | DENG J, WANG Q F, LI G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50: 216-266. |
[134] | WANG S R, YANG L Q, WANG J G, et al. Geostatistical determination of ore shoot plunge and structural control of the Sizhuang world-class epizonal orogenic gold deposit, Jiaodong Peninsula, China[J]. Minerals, 2019, 9(4): 214. |
[135] | 王偲瑞. 胶西北金矿床构造-流体成矿动力学[D]. 北京: 中国地质大学(北京), 2020. |
[136] | DENG J, WANG C M, BAGAS L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. |
[137] | MICKLETHWAITE S, COX S F. Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 318-330. |
[138] | 王中亮. 焦家金矿田成矿系统[D]. 北京: 中国地质大学(北京), 2012. |
[139] | TENTHOREY E, COX S F, TODD H F. Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones[J]. Earth and Planetary Science Letters, 2003, 206(1/2): 161-172. |
[140] | 王偲瑞, 杨立强, 孔鹏飞. 焦家断裂渗透性结构与金矿床群聚机理: 构造应力转移模拟[J]. 岩石学报, 2016, 32(8): 2494-2508. |
[12] | HRONSKY J M A. Deposit-scale structural controls on orogenic gold deposits: An integrated, physical process-based hypothesis and practical targeting implications[J]. Mineralium Deposita, 2020, 55(2): 197-216. |
[13] | ZHANG L, GROVES D I, YANG L Q, et al. Relative roles of formation and preservation on gold endowment along the Sanshandao gold belt in the Jiaodong gold province, China: Importance for province- to district-scale gold exploration[J]. Mineralium Deposita, 2020, 55(2): 325-344. |
[14] | SIBSON R H. Seismogenic framework for ore deposition[M]//Structural Controls on Ore Genesis. Society of Economic Geologists, 2001, 14: 25-50. |
[15] | COX S F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[16] | RHYS D, VALLI F, BURGESS R, et al. Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend[J]. New Concepts and Discoveries, 2015, 1: 333-389. |
[17] | BLENKINSOP T G, OLIVER N H S, DIRKS P G H M, et al. Chapter 1: Structural geology applied to the evaluation of hydrothermal gold deposits[M]//Applied Structural Geology of Ore-forming Hydrothermal Systems. Society of Economic Geologists, 2020: 1-23. |
[18] | GOLDFARB R J, BAKER T, DUBÉ B, et al. Distribution, character, and genesis of gold deposits in metamorphic terran[M]// One Hundredth Anniversary Volume 1905-2005. Washington: Society of Economic Geologists, 2005. |
[19] | GROVES D I, SANTOSH M, MÜLLER D, et al. Mineral systems: Their advantages in terms of developing holistic genetic models and for target generation in global mineral exploration[J]. Geosystems and Geoenvironment, 2022, 1(1): 100001. |
[20] | TALE FAZEL E, PAŠAVA J, WILKE F D H, et al. Source of gold and ore-forming processes in the Zarshuran gold deposit, NW Iran: Insights from in situ elemental and sulfur isotopic compositions of pyrite, fluid inclusions, and O-H isotopes[J]. Ore Geology Reviews, 2023, 156: 105382. |
[21] | SIBSON R H, ROBERT F, POULSEN K H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16(6): 551. |
[22] | FIELDING I O H, JOHNSON S P, ZI J W, et al. Gold metallogeny of the northern Capricorn Orogen: The relationship between crustal architecture, fault reactivation and hydrothermal fluid flow[J]. Ore Geology Reviews, 2020, 122: 103515. |
[23] | YANG L Q, DENG J, GROVES D I, et al. Metallogenic ‘factories’ and resultant highly anomalous mineral endowment on the craton margins of China[J]. Geoscience Frontiers, 2022, 13(2): 101339. |
[24] |
杨立强, 杨伟, 张良, 等. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1): 239-266.
DOI |
[25] | COX S F, KNACKSTEDT M A, BRAUN J. Principles of structural control on permeability and fluid flow in hydrothermal systems[M]// Structural Controls on Ore Genesis. Washington: Society of Economic Geologists, 2001: 1-24. |
[26] | HAYNES F M, KESLER S E. Chemical evolution of brines during Mississippi valley-type mineralization: evidence from East Tennessee and Pine Point[J]. Economic Geology, 1987, 82(1): 53-71. |
[27] | STOFFELL B, APPOLD M S, WILKINSON J J, et al. Geochemistry and evolution of Mississippi valley-type mineralizing brines from the tri-state and northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions[J]. Economic Geology, 2008, 103(7): 1411-1435. |
[28] | KELLEY D S, DELANEY J R. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700℃[J]. Earth and Planetary Science Letters, 1987, 83(1/2/3/4): 53-66. |
[29] | YANG K H, SCOTT S D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system[J]. Nature, 1996, 383: 420-423. |
[30] | BODNAR R J, REYNOLDS T J, KUEHN C A. Fluid-inclusion systematics in epithermal systems[M]// Geology and Geochemistry of Epithermal Systems. Washington: Society of Economic Geologists, 1985, 2: 73-97. |
[31] | ROEDDER E. Volume 12: fluid inclusions[J]. Reviews in Mineralogy, 1984, 12: 644. |
[32] | SEEDORFF E, DILLES J H, PROFFETT J M, et al. Porphyry deposits: Characteristics and origin of hypogene features[M]// One Hundredth Anniversary Volume. Washington: Society of Economic Geologists, 2005. |
[33] | SINGER D, BERGER V I, MORING B. Porphyry copper deposits of the world: Database and grade and tonnage models[R]. Washington: US Geological Survey, 2008. |
[34] | LAMB J B, CLINE J. Depths of formation of the Meikle and Betze/Post deposits[J]. Society of Economic Geologists Guidebook Series, 1997, 28: 101-108. |
[35] | OSTERBERG M W. Geology and geochemistry of the Chimney Creek gold deposit, Humboldt County, Nevada[D]. Arizona: The University of Arizona, 1990. |
[36] | GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13(1/2/3/4/5): 7-27. |
[37] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[38] | YANG L Q, DENG J, GUO C Y, et al. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China[J]. Resource Geology, 2009, 59(2): 181-193. |
[39] | GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: Are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153. |
[40] | SIBSON R H. Structural permeability of fluid-driven fault-fracture meshes[J]. Journal of Structural Geology, 1996, 18(8): 1031-1042. |
[41] | SIBSON R H. Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation[J]. Journal of Structural Geology, 2004, 26(6/7): 1127-1136. |
[42] | BRACE W F. An extension of the Griffith theory of fracture to rocks[J]. Journal of Geophysical Research, 1960, 65(10): 3477-3480. |
[43] | HANCOCK P L. Brittle microtectonics: Principles and practice[J]. Journal of Structural Geology, 1985, 7(3/4): 437-457. |
[44] | SECOR D T. Role of fluid pressure in jointing[J]. American Journal of Science, 1965, 263(8): 633-646. |
[45] | SIBSON R H. Brittle failure mode plots for compressional and extensional tectonic regimes[J]. Journal of Structural Geology, 1998, 20(5): 655-660. |
[46] | 杨林, 王庆飞, 赵世宇, 等. 造山型金矿构造控矿作用[J]. 岩石学报, 2023, 39(2): 277-292. |
[47] | RICE J R, CLEARY M P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 1976, 14(2): 227-241. |
[48] | JAEGER J C, COOK N G W. Fundamentals of Rock Mechanics.[M]. 3rd ed. London: Chapman and Hall, 1979: 1-475. |
[49] | COX S F. Deformational controls on the dynamics of fluid flow in mesothermal gold systems[J]. Geological Society, London, Special Publications, 1999, 155(1): 123-140. |
[50] | COX S F. Injection-driven swarm seismicity and permeability enhancement: Implications for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes—An invited paper[J]. Economic Geology, 2016, 111(3): 559-587. |
[51] | 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190. |
[52] | 王庆飞, 邓军, 赵鹤森, 等. 造山型金矿研究进展: 兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6): 2155-2186. |
[53] | GROVES D I, SANTOSH M, GOLDFARB R J, et al. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits[J]. Geoscience Frontiers, 2018, 9(4): 1163-1177. |
[54] | 陈懋弘, 乐兴文, 李忠阳, 等. 桂西隆林孤立台地卡林型金矿的“梯式” 结构模型及找矿前景[J]. 大地构造与成矿学, 2018, 42(5): 832-845. |
[55] | AGUE J J. Fluid flow in the deep crust[M]// Treatise on Geochemistry. Amsterdam: Elsevier, 2014: 203-247. |
[56] | OLIVER N H S. Review and classification of structural controls on fluid flow during regional metamorphism[J]. Journal of Metamorphic Geology, 1996, 14(4): 477-492. |
[57] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3-1-3-38. |
[58] | 刘颖员, 张立飞. 俯冲带流体不混溶及其演化[J]. 地质学报, 2022, 96(12): 4101-4130. |
[59] | MATTHÄI S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix[J]. Geophysical Research Letters, 2004, 31(7): 1-5. |
[60] | TAYLOR W L, POLLARD D D, AYDIN A. Fluid flow in discrete joint sets: Field observations and numerical simulations[J]. Journal of Geophysical Research(Solid Earth), 1999, 104(12): 28983-29006. |
[61] | SINGHAL B B S, GUPTA R P. Applied Hydrogeology of Fractured Rocks[M]. Dordrecht: Springer Netherlands, 2010. |
[62] | DULLIEN F A L. Porous Media: Fluid Transport and Pore Structure[M]. 2nd ed. San Diego: Academic Press, 1992. |
[63] | STEINER A P, HICKEY K A. Fluid partitioning between veins/fractures and the host rocks in Carlin-type Au deposits: A significant control on fluid-rock interaction and Au endowment[J]. Mineralium Deposita, 2023, 58(4): 797-823. |
[64] | FORSTER C, SMITH L. Fluid flow in tectonic regimes[M]// Mineralogical Association of Canada. Short Course on “Crustal Fluids” Handbook. Toronto: Mineralogical Association of Canada, 1990: 1-47. |
[65] | PERSON M, RAFFENSPERGER J P, GE S M, et al. Basin-scale hydrogeologic modeling[J]. Reviews of Geophysics, 1996, 34(1): 61-87. |
[66] | OLIVER N H S. Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting[J]. Tectonophysics, 2001, 335(1/2): 147-161. |
[67] | ORD A, OLIVER N H S. Mechanical controls on fluid flow during regional metamorphism: Some numerical models[J]. Journal of Metamorphic Geology, 1997, 15(3):345-359. |
[68] | MUIR-WOOD R, KING G C P. Hydrological signatures of earthquake strain[J]. Journal of Geophysical Research(Solid Earth), 1993, 98(12):22035-22068. |
[69] | ETHERIDGE M A, WALL V J, COX S F, et al. High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms[J]. Journal of Geophysical Research(Solid Earth), 1984, 89(6): 4344-4358. |
[70] | BRAUN J, MUNROE S M, COX S F. Transient fluid flow in and around a fault[J]. Geofluids, 2003, 3(2): 81-87. |
[71] | MATTHÄI S K, ROBERTS S G. Transient versus continuous fluid flow in seismically active faults: An investigation by electric analogue and numerical modelling[M]// JAMTVEITB, YARDLEYBWD. Fluid Flow and Transport in Rocks. Dordrecht: Springer, 1997: 263-295. |
[72] | PHILLIPS O M. Flow and Reactions in Permeable Rocks[M]. Cambridge: Cambridge University Press, 1991. |
[73] | TURCOTTE D L, SCHUBERT G. Geodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2002. |
[74] | PHILLIPS G N, GROVES D I, MARTYN J E. An epigenetic origin for Archean banded iron-formation-hosted gold deposits[J]. Economic Geology, 1984, 79(1): 162-171. |
[75] | CAMPBELL MCCUAIG T, KERRICH R. P-T-T-Deformation-Fluid characteristics of lode gold deposits: Evidence from alteration systematics[J]. Ore Geology Reviews, 1998, 12(6): 381-453. |
[76] | GOLDFARB R J, GROVES D I. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26. |
[77] | REED M H. Hydrothermal alteration and its relationship to ore fluid composition[J]. Geochemistry of Hydrothermal Ore Deposits, 1997: 303-366. |
[78] | GAO S, XU H, LI S R, et al. Hydrothermal alteration and ore-forming fluids associated with gold-tellurium mineralization in the Dongping gold deposit, China[J]. Ore Geology Reviews, 2017, 80: 166-184. |
[79] | 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-450, 134, 451-459. |
[80] | 华仁民. 成矿过程中由流体混合而导致金属沉淀的研究[J]. 地球科学进展, 1994, 9(4): 15-22. |
[81] | 张招崇, 王怀洪, 谢秋红, 等. “禹城式”矽卡岩型富铁矿的形成机制[J]. 现代地质, 2024, 38(1): 1-12. |
[82] | 李丽荣, 许德如, 黄泌怡, 等. 海南高通岭石英脉型钼矿床成矿流体来源与成矿机制研究[J]. 大地构造与成矿学, 2023, 47(4): 778-790. |
[83] | 曾键年, 范永香. 流体混合作用导致金沉淀机理的实验研究[J]. 地球科学, 2002, 27(1): 41-45. |
[84] | 张德会. 成矿流体中金属沉淀机制研究综述[J]. 地质科技情报, 1997, 16(3): 53-58. |
[85] | 林舸, ZHAO C B, 王岳军, 等. 含矿流体混合反应与成矿作用的动力平衡模拟研究[J]. 岩石学报, 2003, 19(2): 275-282. |
[86] | 卢焕章. 高盐度、高温和高成矿金属的岩浆成矿流体: 以格拉斯伯格Cu-Au矿为例[J]. 岩石学报, 2000, 16(4): 465-472. |
[87] | 卢焕章, 王中刚, 李院生. 岩浆-流体过渡和阿尔泰三号伟晶岩脉之成因[J]. 矿物学报, 1996, 16(1): 1-7. |
[88] | GUHA J, LU H Z, DUBE B, et al. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits[J]. Economic Geology, 1991, 86(3): 667-684. |
[89] | YANG L Q, DENG J, GUO R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong gold province[J]. Geoscience Frontiers, 2016, 7(3): 419-430. |
[90] | YANG L Q, DENG J, GUO L N, et al. Origin and evolution of ore fluid, and gold-deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. |
[91] | SAI S X, DENG J, QIU K F, et al. Textures of auriferous quartz-sulfide veins and 40Ar/39Ar geochronology of the Rushan gold deposit: Implications for processes of ore-fluid infiltration in the eastern Jiaodong gold province, China[J]. Ore Geology Reviews, 2020, 117: 103254. |
[92] | WEATHERLEY D K, HENLEY R W. Flash vaporization during earthquakes evidenced by gold deposits[J]. Nature Geoscience, 2013, 6: 294-298. |
[93] | YANG L Q, DENG J, WANG Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. |
[94] | YANG L Q, DENG J, WANG Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178. |
[95] | YANG L Q, GUO L N, WANG Z L, et al. Timing and mechanism of gold mineralization at the Wang’ershan gold deposit, Jiaodong Peninsula, Eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. |
[96] | 赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566. |
[97] | 池国祥, 卢焕章. 流体相分离的深度(压力)-温度场特征及其对热液矿床定位的意义[J]. 矿物学报, 1991, 11(4): 355-362. |
[98] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 1-491. |
[99] | 常铭, 刘家军, 杨永春, 等. 甘肃省鹿儿坝金矿流体包裹体研究: 对流体演化和成矿机制的探讨[J]. 现代地质, 2021, 35(6): 1576. |
[100] | PAN J Y, NI P, WANG R C. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions[J]. American Mineralogist, 2019, 104(8): 1092-1116. |
[101] | 王国光, 倪培, 潘君屹. 花岗质岩石相关成矿系统的流体作用[J]. 矿物岩石地球化学通报, 2020, 39(3): 463-471, 441. |
[102] | 严子清, 石文杰, 张鹏涛, 等. 胶东大尹格庄金矿成矿流体时空演化及矿床成因:来自流体包裹体、成矿元素和H-O-S-Pb同位素证据[J]. 地质科技通报, 2024, 43(2): 156-174. |
[103] | 张艳, 韩润生, 胡体才, 等. 构造-流体-成矿耦合机制: 以会泽超大型富锗铅锌矿床为例[J]. 大地构造与成矿学, 2023, 47(5): 969-983. |
[104] | LECUMBERRI-SANCHEZ P, VIEIRA R, HEINRICH C A, et al. Fluid-rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 2017, 45(7): 579-582. |
[105] | LEGROS H, RICHARD A, TARANTOLA A, et al. Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi Province (China)[J]. Chemical Geology, 2019, 508: 92-115. |
[106] | WILLIAMS-JONES A, BOWELL R, MIGDISOV A A. Gold in solution[J]. Elements, 2009, 5: 281-287. |
[107] | FYFE W, KERRICH R. Fluids and thrusting[J]. Chemical Geology, 1985, 49: 353-362. |
[108] | SPENCER J E, WELTY J W. Possible controls of base-and precious-metal mineralization associated with Tertiary detachment faults in the lower Colorado River trough, Arizona and California[J]. Geology, 1986, 14(3): 195. |
[109] | ROBERT F, BOULLIER A M, FIRDAOUS K. Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting[J]. Journal of Geophysical Research(Solid Earth), 1995, 100(7): 12861-12879. |
[110] | CAMERON E M. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1.Conceptual model[J]. Journal of Geochemical Exploration, 1989, 31(2): 135-147. |
[111] | HODGSON C J. The structure of shear-related, vein-type gold deposits: A review[J]. Ore Geology Reviews, 1989, 4(3): 231-273. |
[112] | BONNEMAISON M, MARCOUX E. Auriferous mineralization in some shear-zones: A three-stage model of metallogenesis[J]. Mineralium Deposita, 1990, 25(2): 96-104. |
[113] | COX S F, WALL V J, ETHERIDGE M A, et al. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits—Examples from the Lachlan Fold Belt in central Victoria, Australia[J]. Ore Geology Reviews, 1991, 6(5): 391-423. |
[114] | BOWERS T S. The deposition of gold and other metals: Pressure-induced fluid immiscibility and associated stable isotope signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2417-2434. |
[115] | CLINE J S, BODNAR R J, RIMSTIDT J D. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions: Application to epithermal gold deposits[J]. Journal of Geophysical Research(Solid Earth), 1992, 97(6): 9085-9103. |
[116] | BOULLIER A M, ROBERT F. Palaeoseismic events recorded in Archaean gold-quartz vein networks, Vald’Or, Abitibi, Quebec, Canada[J]. Journal of Structural Geology, 1992, 14(2):161-179. |
[117] | COX S F. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[J]. Journal of Geophysical Research(Solid Earth), 1995, 100(7): 12841-12859. |
[118] | ROBERT F, POULSEN K H. Vein formation and deformation in greenstone gold deposits[M]// Structural Controls on Ore Genesis. Washington: Society of Economic Geologists, 2001: 1-45. |
[119] | FALEIROS F M, DA CRUZ CAMPANHA G A, DA SILVEIRA BELLO R M, et al. Fault-valve action and vein development during strike-slip faulting: An example from the Ribeira Shear Zone, Southeastern Brazil[J]. Tectonophysics, 2007, 438(1/2/3/4): 1-32. |
[120] | PETERSON E C, MAVROGENES J A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea[J]. Geology, 2014, 42(5): 383-386. |
[121] | NGUYEN P T, HARRIS L B, POWELL C M, et al. Fault-valve behaviour in optimally oriented shear zones: An example at the Revenge gold mine, Kambalda, Western Australia[J]. Journal of Structural Geology, 1998, 20(12): 1625-1640. |
[141] | 王偲瑞, 杨立强, 成浩, 等. 基底构造对矿床定位的控制机制: 焦家金矿带构造应力转移模拟[J]. 岩石学报, 2020, 36(5): 1529-1546. |
[142] | BLENKINSOP T G. Orebody geometry in lode gold deposits from Zimbabwe: Implications for fluid flow, deformation and mineralization[J]. Journal of Structural Geology, 2004, 26(6/7): 1293-1301. |
[143] | CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11):1025. |
[144] | EVANS J P, FORSTER C B, GODDARD J V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones[J]. Journal of Structural Geology, 1997, 19(11): 1393-1404. |
[145] | PÁEZ G N, RUIZ R, GUIDO D M, et al. Structurally controlled fluid flow: High-grade silver ore-shoots at Martha epithermal mine, Deseado Massif, Argentina[J]. Journal of Structural Geology, 2011, 33(5): 985-999. |
[122] | SIBSON R H. Earthquake rupturing as a mineralizing agent in hydrothermal systems[J]. Geology, 1987, 15(8): 701. |
[123] | SANCHEZ-ALFARO P, REICH M, DRIESNER T, et al. The optimal windows for seismically-enhanced gold precipitation in the epithermal environment[J]. Ore Geology Reviews, 2016, 79: 463-473. |
[124] | 杨立强, 邓军, 张良, 等. 胶东型金矿[J]. 岩石学报, 2024, 40(6): 1691-1711. |
[125] | DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54(1): 378-391. |
[126] | 舒斌, 郭涛, 吕古贤, 等. 构造应力对焦家金矿床的成矿控制[J]. 现代地质, 1999, 13(4): 425-431. |
[127] | 杨立强, 张中杰, 邓军. 深浅构造耦合成矿效应: 以胶东招掖金矿带为例[J]. 地学前缘, 2004, 11(1): 56. |
[128] | 邓军, 陈玉民, 刘钦, 等. 胶东三山岛断裂带金成矿系统与资源勘查[M]. 北京: 地质出版社, 2010: 1-371. |
[129] | 宋明春, 崔书学, 伊丕厚, 等. 胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M]. 北京: 地质出版社, 2010: 1-346. |
[1] | LÜ Guxian, ZHANG Baolin, JIAO Jiangang, WANG Cuizhi, BI Minfeng, FU Xu, LÜ Chengxun, MA Licheng. Multi-order Characteristics of the “Tectonic Uplift-Detachment Depression” in Blocks of the Neocathaysian Tectonic System: A Study of the Greater Khinganling Orogenic Belt [J]. Geoscience, 2024, 38(04): 853-864. |
[2] | LÜ Guxian, ZHANG Baolin, HU Baoqun, ZHOU Yongsheng, WANG Zongxiu, WANG Hongcai, CAO Daiyong, FANG Weixuan, HAN Runsheng, XU Deru, YANG Xingke, JIAO Jiangang, WANG Cuizhi, LÜ Chengxun. Theoretical Outline and Application Prospects of Tectonophysicochemistry [J]. Geoscience, 2024, 38(04): 837-852. |
[3] | ZHANG Binhui, WANG Hong, NIU Haobin, YU Yuanshan, CHEN Minhua. Genesis and Tectonic Significance of Volcanic Rocks from the Lancang Group in the Lincang Terrane, Sanjiang Region, Southwest China [J]. Geoscience, 2024, 38(04): 1162-1176. |
[4] | CHEN Zhiyou, ZENG Guangqian, BAI Daoyuan, YAO Zeyu, WANG Lingjue, WEN Chunhua, CHEN Xu, WANG Yong, LI Bin, HUANG Leqing, CHEN Jianfeng, LIANG Enyun, XU Ruochao, MA Huiying, XIANG Ke. Mesozoic and Cenozoic Deformation Sequences and Their Dynamic Background in the Danyishan Area, Southern Hunan [J]. Geoscience, 2024, 38(04): 1092-1108. |
[5] | JIAO Jiangang, TAN Fu, LI Linna, LIU Jian, YANG Xingke, GAO Dong. Observation and Analysis of Diagenesis and Mineralization Structures of the Jinchuan Cu-Ni Sulfide Deposit in Gansu [J]. Geoscience, 2024, 38(04): 1026-1042. |
[6] | XIE Zhaohan, FENG Chang, QIU Yongfeng, LI Heyong, ZHANG Jianbo, TANG Haiqing. Tectonic Evolution of the Yan ③ Fault Zone and Its Trap-controlling Effect on Yancheng Sag, Subei Basin [J]. Geoscience, 2024, 38(02): 300-311. |
[7] | GUO Fusheng, LING Yuanyuan, CHEN Liuqin, ZHOU Wanpeng, LI Hongwei, CHENG Liangkai, WU Zhichun, LI Guangrong, GUO Zhen, LI Bin. Controlling Factors and Types of Geomorphologic Landscapes in Danxiashan UNESCO Global Geopark of China [J]. Geoscience, 2023, 37(06): 1665-1679. |
[8] | TIAN Anqi, CHEN Shi, YU Yixin, XIU Jinlei, JIN Feng. Layered Deformation Characteristics, Formation Mechanism of Strike-slip Faults on the Western Margin of Mosuowan Uplift,Junggar Basin [J]. Geoscience, 2023, 37(02): 296-306. |
[9] | PANG Sichen, LI Chuanxin, MAO Fengjun, WANG Tao, YUAN Shengqiang, HE Songgao, SHI Chenyi. Structural Geometric and Kinematic Characteristics of Grein Depression in the West African Rift System [J]. Geoscience, 2023, 37(02): 328-339. |
[10] | ZHANG Honghui, YUAN Yongsheng, YU Yangzhong, LI Hong, ZHANG Liyuan, LI Zhiwei, GUO Taitang, PAN Jiangtao, ZHAN Huasi, SHI Haitao. Records of Mesozoic-Cenozoic Collision Orogenic Events on the Western Margin of the Yangtze Platform:Geochronology Evidence from Zircon U-Pb Isotope of Emeishan Basalt [J]. Geoscience, 2021, 35(05): 1155-1177. |
[11] | LIU Airong, XU Yongjing, LIU Chenglin, PANG Ercheng. Geological Characteristics and Tectonic Evolution of Datong Basin [J]. Geoscience, 2021, 35(05): 1296-1310. |
[12] | LI Sheng, NI Jinlong, ZHANG Shangkun, SHEN Ying. Sinistral Ductile Shear and Magmatic Migration Pattern in the Late Mesozoic Yishu Fault Zone [J]. Geoscience, 2021, 35(03): 776-786. |
[13] | YU Shangjiang, LI Wei. Sedimentary Filling Characteristics of Luonan and Shanyang Basins and Constraints on Mesozoic-Cenozoic Intracontinental Evolution in East Qinling [J]. Geoscience, 2020, 34(04): 687-699. |
[14] | WANG Liang, ZHANG Jiawei, XIANG Kunpeng, CHEN Guoyong, HU Congliang, ZHANG Chen. Geophysical Characteristics and Pb-Zn Ore-controlling Structures in Northwestern Guizhou [J]. Geoscience, 2019, 33(02): 325-336. |
[15] | LIU Shun, XIA Te, WU Meiqian, ZHOU Jun, WANG Yuan, WEI Minghao. Structural Features and Geological Significance of Lhozhag Fault in Lhozhag Area, Southeastern Tibet [J]. Geoscience, 2019, 33(01): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||