Geoscience ›› 2018, Vol. 32 ›› Issue (03): 429-437.DOI: 10.19657/j.geoscience.1000-8527.2018.03.02
• Mineral Deposits and Petrology • Previous Articles Next Articles
GAO Zhenzhen1(), ZHANG Zhaochong1(
), CHENG Zhiguo1, MIRZAEV A U2, NURTAEV B S2, KODIROV O2
Received:
2017-06-16
Revised:
2017-09-18
Online:
2018-06-10
Published:
2023-09-22
Contact:
ZHANG Zhaochong
CLC Number:
GAO Zhenzhen, ZHANG Zhaochong, CHENG Zhiguo, MIRZAEV A U, NURTAEV B S, KODIROV O. Fluid Inclusions and Ore Genesis Analysis of the Uchkulach Lead-Zinc Ore Deposit in Nuratau Region, Uzbekistan[J]. Geoscience, 2018, 32(03): 429-437.
样号 | S | Fe | Cu | Zn | Pb | 总量 | Zn/S | Pb/ S |
---|---|---|---|---|---|---|---|---|
UCH-3-4Gn | 13.55 | 0.09 | 0.24 | 0.27 | 84.95 | 99.10 | — | 0.97 |
UCH-3-5Gn | 13.63 | — | — | — | 86.19 | 99.82 | — | 0.98 |
UCH-3-6Gn | 13.34 | 0.06 | — | — | 86.38 | 99.78 | — | 1.00 |
UCH-2-10Gn | 13.20 | 0.03 | — | 0.28 | 86.07 | 99.58 | — | 1.01 |
UCH-2-11Gn | 13.11 | — | 0.05 | — | 86.37 | 99.53 | — | 1.02 |
UCH-2-12Gn | 13.24 | — | — | — | 86.18 | 99.42 | — | 1.01 |
UCH-2-13Gn | 13.13 | 0.16 | — | 0.34 | 86.14 | 99.77 | — | 1.02 |
UCH-2-14Sp | 33.06 | 0.39 | 0.10 | 64.61 | 1.40 | 99.56 | 0.96 | — |
UCH-2-15Sp | 33.07 | 0.10 | — | 64.86 | 1.25 | 99.28 | 0.96 | — |
UCH-2-16Sp | 32.97 | 0.22 | — | 64.99 | 1.41 | 99.59 | 0.97 | — |
UCH-2-17Sp | 32.87 | 0.33 | — | 65.81 | 0.73 | 99.74 | 0.98 | — |
UCH-2-18Sp | 33.13 | 0.11 | — | 65.39 | 0.48 | 99.11 | 0.97 | — |
Table 1 Electron microprobe analyses of sphalerite and galena from the Uchkulach lead-zinc deposit(%)
样号 | S | Fe | Cu | Zn | Pb | 总量 | Zn/S | Pb/ S |
---|---|---|---|---|---|---|---|---|
UCH-3-4Gn | 13.55 | 0.09 | 0.24 | 0.27 | 84.95 | 99.10 | — | 0.97 |
UCH-3-5Gn | 13.63 | — | — | — | 86.19 | 99.82 | — | 0.98 |
UCH-3-6Gn | 13.34 | 0.06 | — | — | 86.38 | 99.78 | — | 1.00 |
UCH-2-10Gn | 13.20 | 0.03 | — | 0.28 | 86.07 | 99.58 | — | 1.01 |
UCH-2-11Gn | 13.11 | — | 0.05 | — | 86.37 | 99.53 | — | 1.02 |
UCH-2-12Gn | 13.24 | — | — | — | 86.18 | 99.42 | — | 1.01 |
UCH-2-13Gn | 13.13 | 0.16 | — | 0.34 | 86.14 | 99.77 | — | 1.02 |
UCH-2-14Sp | 33.06 | 0.39 | 0.10 | 64.61 | 1.40 | 99.56 | 0.96 | — |
UCH-2-15Sp | 33.07 | 0.10 | — | 64.86 | 1.25 | 99.28 | 0.96 | — |
UCH-2-16Sp | 32.97 | 0.22 | — | 64.99 | 1.41 | 99.59 | 0.97 | — |
UCH-2-17Sp | 32.87 | 0.33 | — | 65.81 | 0.73 | 99.74 | 0.98 | — |
UCH-2-18Sp | 33.13 | 0.11 | — | 65.39 | 0.48 | 99.11 | 0.97 | — |
样号 | MgO | SO3 | FeO | SrO | BaO | 总量 | Sr/Ba |
---|---|---|---|---|---|---|---|
UCH-3-1Brt | — | 35.74 | 0.09 | 1.30 | 62.90 | 100.02 | 0.032 |
UCH-3-2Brt | 0.06 | 35.89 | 0.13 | 0.97 | 63.25 | 100.30 | 0.024 |
UCH-3-3Brt | 0.15 | 35.69 | — | 0.59 | 63.78 | 100.21 | 0.014 |
UCH-2-8Brt | 0.05 | 36.36 | — | 1.07 | 63.48 | 100.96 | 0.026 |
UCH-2-9Brt | 0.07 | 35.73 | 0.25 | 2.68 | 60.97 | 99.70 | 0.069 |
Table 2 Electron microprobe analyses of barite from the Uchkulach lead-zinc deposit (%)
样号 | MgO | SO3 | FeO | SrO | BaO | 总量 | Sr/Ba |
---|---|---|---|---|---|---|---|
UCH-3-1Brt | — | 35.74 | 0.09 | 1.30 | 62.90 | 100.02 | 0.032 |
UCH-3-2Brt | 0.06 | 35.89 | 0.13 | 0.97 | 63.25 | 100.30 | 0.024 |
UCH-3-3Brt | 0.15 | 35.69 | — | 0.59 | 63.78 | 100.21 | 0.014 |
UCH-2-8Brt | 0.05 | 36.36 | — | 1.07 | 63.48 | 100.96 | 0.026 |
UCH-2-9Brt | 0.07 | 35.73 | 0.25 | 2.68 | 60.97 | 99.70 | 0.069 |
Fig.6 Histograms of homogenization temperature and salinity versus homogenization temperature of ore-forming fluid inclusions in the Uchkulach lead-zinc deposit
矿床类型 | 密西西比河谷型铅锌矿 | Uchkulach铅锌矿 |
---|---|---|
大地构造背景 | 最重要的是其产出于被动大陆边缘的碳酸盐岩台地白云岩和灰岩中,或位于盆地侧翼,造山前陆或前陆逆冲带 | 被动大陆边缘的碳酸盐岩台地 |
成矿方式 | 碳酸盐岩角砾间开放孔隙充填,对围岩和碎屑的交代作用,后生成矿特征 | 热液重晶石的出现,成矿围岩时代略早于成矿时代,金属矿物充填白云石孔隙,交代白云石,后生成矿特征 |
金属矿物 | 常见闪锌矿、方铅矿及铁硫化物,富银贫铜 | 闪锌矿、方铅矿、黄铁矿,Ag品位:2.4~42.19 g/t |
脉石矿物 | 碳酸盐(白云石、菱铁矿、铁白云石、方解石),典型出现少量至大量重晶石 | 白云石、方解石、重晶石 |
含矿岩石 | 白云岩为主的碳酸盐岩,少量砂岩 | 白云岩、灰岩 |
流体包裹体 | 均一温度50~250 ℃,少部分达300 ℃,主要分布在90~150 ℃,盐度10%~30%,成矿流体来源主要是浓缩的海水 | 均一温度71~153 ℃,盐度11.0%~20.2%,成矿流体来源是盆地卤水 |
控矿因素 | 断层、破碎带、溶解坍塌角砾岩、基底隆起、岩性边界 | 背斜翼部、转折端的穹窿构造 |
矿体形态 | 层状、筒状、透镜状、不规则状等(层控、断层控制、喀斯特地形控制) | 层状、条带状和透镜状 |
围岩蚀变 | 白云岩化、方解石化、硅化 | 白云石化、似碧玉化、硅化、赤铁矿化和泥化 |
Table 3 Contrast the Uchkulach lead-zinc deposit with MVT deposits
矿床类型 | 密西西比河谷型铅锌矿 | Uchkulach铅锌矿 |
---|---|---|
大地构造背景 | 最重要的是其产出于被动大陆边缘的碳酸盐岩台地白云岩和灰岩中,或位于盆地侧翼,造山前陆或前陆逆冲带 | 被动大陆边缘的碳酸盐岩台地 |
成矿方式 | 碳酸盐岩角砾间开放孔隙充填,对围岩和碎屑的交代作用,后生成矿特征 | 热液重晶石的出现,成矿围岩时代略早于成矿时代,金属矿物充填白云石孔隙,交代白云石,后生成矿特征 |
金属矿物 | 常见闪锌矿、方铅矿及铁硫化物,富银贫铜 | 闪锌矿、方铅矿、黄铁矿,Ag品位:2.4~42.19 g/t |
脉石矿物 | 碳酸盐(白云石、菱铁矿、铁白云石、方解石),典型出现少量至大量重晶石 | 白云石、方解石、重晶石 |
含矿岩石 | 白云岩为主的碳酸盐岩,少量砂岩 | 白云岩、灰岩 |
流体包裹体 | 均一温度50~250 ℃,少部分达300 ℃,主要分布在90~150 ℃,盐度10%~30%,成矿流体来源主要是浓缩的海水 | 均一温度71~153 ℃,盐度11.0%~20.2%,成矿流体来源是盆地卤水 |
控矿因素 | 断层、破碎带、溶解坍塌角砾岩、基底隆起、岩性边界 | 背斜翼部、转折端的穹窿构造 |
矿体形态 | 层状、筒状、透镜状、不规则状等(层控、断层控制、喀斯特地形控制) | 层状、条带状和透镜状 |
围岩蚀变 | 白云岩化、方解石化、硅化 | 白云石化、似碧玉化、硅化、赤铁矿化和泥化 |
[1] | TURAMUTRATOV I B, ISOKOV M U, HODJAEV N T, et al. Atlas of Ore Deposits Models of Uzbekistan[M]. Tashkent: State Committee of Republic of Uzbekistan on Geology and Mine-ral Resources, Scientific Research Institute of Mineral Resources, 2011: 1-100. |
[2] | 彭守晋. 对苏联捷克利等矿床的考察[J]. 新疆有色金属, 1990(3): 51-58. |
[3] | 李志丹, 薛春纪, 董新丰, 等. 新疆乌恰县乌拉根铅锌矿床地质特征S-Pb同位素组成[J]. 地学前缘, 2013, 20(1): 40-54. |
[4] |
XUE C J, CHI G X, LI Z D, et al. Geology, geochemistry and genesis of the Cretaceous and Paleocene sandstone and conglome-rate-hosted Uragen Zn-Pb deposit, Xinjiang, China: a review[J]. Ore Geology Review, 2014, 63: 328-342.
DOI URL |
[5] | 李志丹, 薛春纪, 董新丰, 等. 新疆霍什布拉克铅锌矿床微量元素地球化学[J]. 岩石矿物学杂志, 2014, 33(3): 540-550. |
[6] | 叶庆同, 吴一平, 傅旭杰, 等. 西南天山金和有色金属矿床成矿条件和成矿预测[M]. 北京: 地质出版社, 1999:129-140. |
[7] | 王宏运, 吴新忠, 董雷杰, 等. 新疆西南天山喀尔勇库勒地区铅锌矿类型及成矿机理探讨[J]. 矿产与地质, 2014, 28(6): 674-678. |
[8] | 张舒, 张招崇, 黄河, 等. 南天山沙里塔什铅锌矿床地质特征及S、Pb同位素特征研究[J]. 现代地质, 2010, 24(5): 856-865. |
[9] | 李志丹, 薛春纪, 张舒, 等. 新疆西南天山霍什布拉克铅锌矿床同位素地球化学及成因[J]. 矿床地质, 2010, 29(增刊): 468-469. |
[10] |
XIAO W J, ZHANG L C, QIN K Z. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304: 370-395.
DOI URL |
[11] | 何国琦, 朱永峰. 中国新疆及其邻区地质矿产对比研究[J]. 中国地质, 2006, 33(3): 451-460. |
[12] |
ABZALOV M. Zarmitan granitoid-hosted gold deposit, Tian Shan belt, Uzbekistan[J]. Economic Geology, 2007, 102(3): 519-532.
DOI URL |
[13] |
GAO J, LONG L L, KLEND R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238.
DOI URL |
[14] |
薛春纪, 赵晓波, 莫宣学, 等. 西天山“亚洲金腰带”及其动力背景和成矿控制与找矿[J]. 地学前缘, 2014, 21(5): 128-155.
DOI |
[15] |
BISKE Y S, SELTMANN R. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans[J]. Gondwana Research, 2010, 17(2/3): 602-613.
DOI URL |
[16] | MCCANN T, NURTAEV B, KHARIN V, et al. Ordovician-Carboniferous tectono-sedimentary evolution of the North Nuratau region, Uzbekistan (Westernmost Tien Shan)[J]. Tectonophy-sics, 2013, 590: 196-213. |
[17] |
BODNAR R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimca et Cosmochimca Acta, 1993, 57: 683-684.
DOI URL |
[18] | 刘铁庚, 叶霖, 周家喜, 等. 闪锌矿的Fe, Cd关系随其颜色变化而变化[J]. 中国地质, 2010, 37(5): 1457-1468. |
[19] | KULLERUD G. The FeS-ZnS system, a geological thermometer[J]. Norsk Geologisk Tidsskrift, 1953, 32: 61-147. |
[20] |
LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-hosted lead-zinc deposits in earth history[J]. Economic Geology, 2010, 105(3): 593-625.
DOI URL |
[21] | BEANE R E. The magmatic-meteoric transition[M]//Geothermal Resources Council.The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province. Davis, California: Geothermal Resources Council, 1983: 245-253. |
[22] | 韩朝辉, 宋玉财, 刘英超, 等. 伊朗Emarat铅锌矿床成矿特征及矿床成因研究[J]. 地质学报, 2015, 89(6): 1595-1606. |
[23] | 刘英超, 侯增谦, 杨竹森, 等. 青海玉树东莫扎抓铅锌矿床流体包裹体研究[J]. 岩石学报, 2010, 26(6): 1805-1819. |
[24] | 涂光炽. 论改造成矿兼评现行矿床成因分类中的弱点[M]//中国科学院地球化学研究所. 地球化学文集. 北京: 科学出版社, 1986: 1-7. |
[25] |
PICKERING K T, KOREN T N, LYTOCHKIN V N, et al. Silurian-Devonian active-margin deep-marine systems and palaeoeography, Alai Range, Southern Tien Shan, Central Asia[J]. Journal of the Geological Society of London, 2008, 165(1): 189-210.
DOI URL |
[1] | WANG Qibo, ZHANG Shouting, TANG Li, LI Junjun, SHENG Yuanming. Genesis of Yangshan Fluorite Deposit in Western Henan Province: Fluorite REE Composition and Fluid Inclusion Thermomechanical Constraints [J]. Geoscience, 2023, 37(06): 1524-1537. |
[2] | DU Jun, LIU Hongwei, CHANG Honglun. Experimental Study on Fluid Inclusion Synthesis in Plagioclase [J]. Geoscience, 2023, 37(06): 1634-1643. |
[3] | ZHU Tong, SUN Zhenjun, YU Henan, WANG Chengyang, LIU Guanghu. Zircon U-Pb Geochronology, Hf isotope and Whole-Rock Geochemical Characteristics of Xiaohanshan Pluton in Haobugao Pb-Zn Deposit, Inner Mongolia [J]. Geoscience, 2022, 36(01): 282-294. |
[4] | GUO Yuncheng, LIU Jiajun, YIN Chao, GUO Mengxu. Geological Characteristics and Ore-forming Fluids of the Dahu Au-Mo Deposit in Xiaoqinling Gold Field [J]. Geoscience, 2021, 35(06): 1536-1550. |
[5] | WANG Chao, WANG Ruiting, LIU Yunhua, XUE Yushan, HU Xishun, NIU Liang. Fluid Inclusion and C-H-O-S Stable Isotopic Studies of Sanguanmiao Gold Deposit, Shangnan, Shaanxi Province [J]. Geoscience, 2021, 35(06): 1551-1564. |
[6] | CHANG Ming, LIU Jiajun, YANG Yongchun, ZHAI Degao, ZHOU Shuming, WANG Jianping. Fluid Inclusion Study of the Lu'erba Au Deposit in Gansu Province: Discussion on Fluid Evolution and Metallogenic Mechanism [J]. Geoscience, 2021, 35(06): 1576-1586. |
[7] | SUN Kang, CAO Yi, ZHANG Wei, ZHAO Yang. Geology and Fluid Inclusions of the Tongkuangli Molybdenum Polymetallic Deposit in Qingyang Area, Anhui Province, China [J]. Geoscience, 2021, 35(05): 1371-1379. |
[8] | HAO Peng, YANG Jilei, ZHANG Xudong, ZANG Chunyan, CHEN Rongtao, WANG Bo, SHUI Leilei, WANG Sihui, CAI Tao. Mechanism of Differential Oil-gas Distribution in the Steep-slope Zone (Northwestern Margin of Bozhong Sag): Evidence from Reconstruction of Hydrocarbon Accumulation [J]. Geoscience, 2021, 35(04): 1124-1135. |
[9] | ZENG Ruiyin, JIANG Hua, ZHU Xinyou, ZHANG Xiong, XIAO Jian, LÜ Xiaoqiang, HU Chuan, YANG Xiaokun, LI Jinlin, ZHEN Zheguang. Fluid Evolution and Mineralization Mechanism of Dongchuan Copper Deposit in Yunnan Province [J]. Geoscience, 2021, 35(01): 244-257. |
[10] | YUAN Weiheng, GU Xuexiang, ZHANG Yongmei, DU Zezhong, YU Xiaofei, SUN Hairui, LÜ Xin. Properties of Ore-forming Fluids and Genesis of the Xiaoxigong Gold Deposit in the Beishan Region, Gansu Province [J]. Geoscience, 2020, 34(03): 554-568. |
[11] | FANG Yan, HE Mouchun, DING Zhenju, XU Yiran, WEI Lianxi. Ore-forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province [J]. Geoscience, 2020, 34(02): 254-265. |
[12] | SUN Kexin, LI Xianqing, WEI Qiang, LIANG Wanle, ZHANG Yachao, LI Jian, XIAO Zhongyao. Geochemical Characteristics of Paleo-fluid in Tight Sandstone from Cretaceous Reservoir in Keshen Large Gas Field, Kuqa Depression [J]. Geoscience, 2019, 33(06): 1220-1228. |
[13] | LIU Runchuan, REN Zhanli, MA Kan, ZHANG Yuanyuan, QI Kai, YU Chunyong, REN Wenbo, YANG Yan. Classification of Hydrocarbon Accumulation Phases of Yanchang Formation in Southern Ordos Basin [J]. Geoscience, 2019, 33(06): 1263-1274. |
[14] | LIU Xiang, GONG Xiaoping, LIU Yangyang, WANG Zhe, FENG Jun, LIU Shijie, HAN Bingjun, QI Rui. Geochemical Characteristics and Tectonic Significance of Ordovician Intrusions in Bayanbulak, Xinjiang,China [J]. Geoscience, 2019, 33(03): 501-513. |
[15] | GAO Liye, ZHANG Yongmei, GU Xuexiang, LIU Li, WANG Luzhi, OUYANG Xin. Geological Characteristics and Ore-forming Fluids of the Jinlu Gold Deposit in Aohan Banner, Inner Mongolia [J]. Geoscience, 2019, 33(01): 137-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||