Geoscience ›› 2018, Vol. 32 ›› Issue (02): 385-391.DOI: 10.19657/j.geoscience.1000-8527.2018.02.17
• Experimental Study of Hydrate • Previous Articles Next Articles
WAN Lihua(), LIANG Deqing(
), LI Dongliang, GUAN Jin’an
Received:
2017-05-04
Revised:
2017-09-21
Online:
2018-04-10
Published:
2018-05-07
CLC Number:
WAN Lihua, LIANG Deqing, LI Dongliang, GUAN Jin’an. Experimental Study of Thermophysical Properties of Reservoirs Bearing Gas Hydrates in Qilian Mountain Permafrost[J]. Geoscience, 2018, 32(02): 385-391.
编号 | 钻孔 | 发现水 合物层段 | 层段主 要岩性 | 水合物主要 产状类型 | 岩性特征 |
---|---|---|---|---|---|
样品1 | SR-1井 | 312 m处 | 泥岩 | 浸染状 | 黑褐色,含钙 质细纹层 |
样品2 | DR-1井 | 312 m处 | 细砂岩 | 孔隙状 | 成分以石英为主,坚 硬,局部较易破碎 |
Table 1 Main features of rock samples
编号 | 钻孔 | 发现水 合物层段 | 层段主 要岩性 | 水合物主要 产状类型 | 岩性特征 |
---|---|---|---|---|---|
样品1 | SR-1井 | 312 m处 | 泥岩 | 浸染状 | 黑褐色,含钙 质细纹层 |
样品2 | DR-1井 | 312 m处 | 细砂岩 | 孔隙状 | 成分以石英为主,坚 硬,局部较易破碎 |
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.41 | 0.850 | 0.712 |
-8.72 | 0.853 | 0.755 |
-5.32 | 0.816 | 0.788 |
-3.74 | 0.721 | 0.855 |
-2.48 | 0.657 | 0.786 |
-1.42 | 0.633 | 0.832 |
1.78 | 0.650 | 0.825 |
3.42 | 0.602 | 0.775 |
5.34 | 0.606 | 0.825 |
8.01 | 0.613 | 0.721 |
9.41 | 0.577 | 0.894 |
Table 2 Thermal conductivity and thermal diffusion coe-fficient of the dried mudstone sample
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.41 | 0.850 | 0.712 |
-8.72 | 0.853 | 0.755 |
-5.32 | 0.816 | 0.788 |
-3.74 | 0.721 | 0.855 |
-2.48 | 0.657 | 0.786 |
-1.42 | 0.633 | 0.832 |
1.78 | 0.650 | 0.825 |
3.42 | 0.602 | 0.775 |
5.34 | 0.606 | 0.825 |
8.01 | 0.613 | 0.721 |
9.41 | 0.577 | 0.894 |
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.70 | 1.026 | 0.792 2 |
-7.07 | 1.050 | 0.788 8 |
-5.14 | 0.968 | 0.773 5 |
-4.72 | 0.937 | 0.885 0 |
-3.69 | 0.766 | 0.834 7 |
-1.39 | 0.733 | 0.978 6 |
0.44 | 0.746 | 0.981 6 |
2.32 | 0.746 | 0.958 0 |
4.15 | 0.749 | 1.006 0 |
5.25 | 0.747 | 0.880 2 |
6.63 | 0.717 | 0.880 2 |
7.95 | 0.704 | 0.892 0 |
Table 3 Thermal conductivity and thermal diffusion coe-fficient of the mudstone bearing methane hydrate
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.70 | 1.026 | 0.792 2 |
-7.07 | 1.050 | 0.788 8 |
-5.14 | 0.968 | 0.773 5 |
-4.72 | 0.937 | 0.885 0 |
-3.69 | 0.766 | 0.834 7 |
-1.39 | 0.733 | 0.978 6 |
0.44 | 0.746 | 0.981 6 |
2.32 | 0.746 | 0.958 0 |
4.15 | 0.749 | 1.006 0 |
5.25 | 0.747 | 0.880 2 |
6.63 | 0.717 | 0.880 2 |
7.95 | 0.704 | 0.892 0 |
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-8.11 | 1.155 | 1.412 |
-6.27 | 1.158 | 1.550 |
-4.56 | 1.271 | 1.340 |
-2.71 | 0.958 | 1.198 |
-1.75 | 0.857 | 1.292 |
1.18 | 0.879 | 1.256 |
3.14 | 0.873 | 1.627 |
6.71 | 0.934 | 1.674 |
9.28 | 0.8282 | 1.654 |
Table 4 Thermal conductivity and thermal diffusion coe-fficient of the dried sandstone sample
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-8.11 | 1.155 | 1.412 |
-6.27 | 1.158 | 1.550 |
-4.56 | 1.271 | 1.340 |
-2.71 | 0.958 | 1.198 |
-1.75 | 0.857 | 1.292 |
1.18 | 0.879 | 1.256 |
3.14 | 0.873 | 1.627 |
6.71 | 0.934 | 1.674 |
9.28 | 0.8282 | 1.654 |
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.77 | 4.510 | 1.403 |
-7.96 | 4.456 | 1.700 |
-6.32 | 4.530 | 1.630 |
-4.33 | 4.555 | 1.640 |
-2.33 | 4.250 | 1.769 |
-0.46 | 4.001 | 1.635 |
1.50 | 3.870 | 1.508 |
3.43 | 3.899 | 1.582 |
5.17 | 3.850 | 1.660 |
Table 5 Thermal conductivity and thermal diffusion coe-fficient of the sandstone sample bearing methane hydrate
T/℃ | d/(W·m-1·K-1) | α/(mm2·s-1) |
---|---|---|
-9.77 | 4.510 | 1.403 |
-7.96 | 4.456 | 1.700 |
-6.32 | 4.530 | 1.630 |
-4.33 | 4.555 | 1.640 |
-2.33 | 4.250 | 1.769 |
-0.46 | 4.001 | 1.635 |
1.50 | 3.870 | 1.508 |
3.43 | 3.899 | 1.582 |
5.17 | 3.850 | 1.660 |
[1] | COOK J G, LAUBITZ M J. The thermal conductivity of two clathrate hydrates[M]//Proceedubgs 17th International Thermal Conductivity Conference. Gaithersburg:[s.n.], 1981:13-40. |
[2] |
COOK J G, LEAIST D G. An exploratory study of the thermal conductivity of methane hydrate[J]. Geophysical Research Letters, 1983, 10: 397-399.
DOI URL |
[3] | WAITE W F, DEMARTIN B J, KIRBY S H, et al. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand[J]. Geophysical Research Letters, 2002, 29(24):82. |
[4] |
万丽华, 梁德青, 李栋梁, 等. 二氧化碳水合物导热和热扩散特性[J]. 化工学报, 2016, 67(10):4169-4175.
DOI |
[5] |
STOLL R D, BRYAN G M. Physical properties of sediments containing gas hydrates[J]. Journal of Geophysical Research, 1979, 84: 1629-1634.
DOI URL |
[6] |
万丽华, 梁德青, 关进安. 烃类水合物导热特性的分子动力学模拟[J]. 化工学报, 2014, 65(3):792-796.
DOI |
[7] |
万丽华, 梁德青, 吴能友, 等. 客体分子数对甲烷水合物导热性能影响的分子动力学模拟[J]. 化工学报, 2012, 63(2):382-3863.
DOI |
[8] | 岳英洁, 业渝光, 刁少波, 等. 沉积物中水合物热物理性质测试实验初探[J]. 海洋地质动态, 2007, 23 (5):35-37. |
[9] | ROSS R G, ANDERSSON P. Clathrate and other solid phases in the tetrahydrofuran-water system: thermal conductivity and heat capacity under pressure[J]. Canada Journal of Chemistry, 1982, 60: 881-892. |
[10] |
YANG L, ZHAO J F, LIU W G, et al. Experimental study on the effective thermal conductivity of hydrate-bearing sediments[J]. Energy, 2015, 79:203-211.
DOI URL |
[11] |
RUEFF R M, SLOAN E D, YESAVAGE V F. Heat capacity and heat of dissociation of methane hydrate[J]. American Institute of Chemical Engineers Journal, 1988, 34(9):1468-1476.
DOI URL |
[12] |
WAN L H, LIANG D Q, WU N Y, et al. Molecular dynamics simulations of the mechanisms of thermal conduction in methane hydrates[J]. Science China Chemistry, 2012, 55(1):167-174.
DOI URL |
[13] |
HANDA Y P. Composition, enthalpy of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutene hydrate, as determined by heat-flow calorimeter[J]. Journal of Chemical Thermodynamics, 1986, 18:915-921.
DOI URL |
[14] |
NING F L, GLAVATSKIY K, JI Z, et al. Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations[J]. Physical Chemistry Chemical Physics, 2015, 17:2869-2883.
DOI URL |
[15] | MAKOGEON Y F. Hydrates of Hydrocarbons[M]. Washington: Pennwell Publishing Company, 1997: 92. |
[16] | 何晓霞, 王胜杰, 刘芙蓉. 一种精确计算天然气水合物密度的方法[J]. 天然气工业, 2004, 24(10):30-31. |
[17] | 李栋梁, 卢静生, 梁德青. 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响[J]. 新能源进展, 2016, 4(3):179-183. |
[18] | 胡高伟, 业渝光, 刁少波, 等. 时域反射技术测量海洋沉积物含水量的研究[J]. 现代地质, 2010, 24(3):622-626. |
[19] |
ROSENBAUM E J, ENGLISH N J, JOHNSON J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. Journal of Physical Chemistry B, 2007, 111:13194-13205.
DOI URL |
[20] | DEMARTIN B J. Laboratory measurements of the thermal conductivity and thermal diffusivity of methane hydrate at simulated in situ conditions[D]. Georgia Institute of Technology, 2001. |
[21] |
TURNER D J, KUMAR P, SLOAN E D. A new technique for hydrate thermal diffusivity measurements[J]. International Journal of Thermophysics, 2005, 26(6):1681-1691.
DOI URL |
[22] | KUMAR P, TURNER D, SLOAN E D. Thermal diffusivity measurements of porous methane hydrate and hydrate-sediment mixtures[J]. Journal of Geophysical Research, 2004, 109:8-16. |
[23] | WAITE W F, STERN L A, KIRBY S H, et al. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate[J]. International Journal of Geophysics, 2007, 169: 767-774. |
[24] |
WAITE W F, GILBERT L Y, WINTERS W J, et al. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data[J]. Review of Scientific Instruments, 2006, 77: 044904-1-5.
DOI URL |
[25] | 李栋梁, 梁德青. 水合物导热系数和热扩散率实验研究[J]. 新能源进展, 2015, 6(3):464-468. |
[1] | YANG Lumei, KUANG Rongxi, GUO Hui, ZUO Liqiong, GOU Fugang, XU Shugang, ZHANG Shuo. Current Geothermal Field of the South Jiangsu Modernization Demonstrative Area and Its Influencing Factors [J]. Geoscience, 2023, 37(04): 954-962. |
[2] | WANG Shengyi, ZOU Changchun, PENG Cheng, WANG Hongcai, LU Jingan, KANG Dongju, WU Caowei, LAN Xixi, XIE Yingfeng. Quantitative Characterization of Hydrate Occurrence Mode in Marine Pore-filling Gas Hydrate Reservoirs: Constraints from Acoustic and Resistivity Log Data [J]. Geoscience, 2023, 37(01): 127-137. |
[3] | GUO Zihao, LI Canping, CHEN Fengying, GOU Limin, WANG Hongtao, ZENG Xianjun, LIU Yilin, TIAN Xinyu. Effect of Methane from Natural Gas Hydrate Decomposition on Marine Life [J]. Geoscience, 2023, 37(01): 138-152. |
[4] | ZHENG Qinghua, LIU Xingjun, ZHANG Xiaolong, WANG Hongjun, LIAO Yongle, AN Erliang, LIU Tao, ZHANG Jianna, ZUO Qin. Review of the High Natural Gamma Sandstones Associated With Source Rocks in the Chang 73 Submember of the Yanchang Formation, Ordos Basin [J]. Geoscience, 2022, 36(04): 1087-1094. |
[5] | LU Junhui, ZHANG Xiaoli, YANG Zhen, LI Yajun, WANG Xiaolin, ZHAO Xi. Saturation Calculation Model With Variable Rock-Electrical Parameters for Tight Sandstone Reservoirs: A Case Study of the Shihezi Formation (8th Member) in Western Sulige Gas Field [J]. Geoscience, 2022, 36(04): 1131-1137. |
[6] | TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, LONG Guohui, HE Shijie, LIU Xiaoxue, WANG Yuchao. Reservoir Characteristics and Dynamic Accumulation Process of the Quaternary Mudstone Biogas [J]. Geoscience, 2022, 36(02): 682-694. |
[7] | XIE Yingfeng, LU Jing’an, KUANG Zenggui, KANG Dongju, WANG Tong, CAI Huimin. Well Logging Evaluation for Three-Phase Zone with Gas Hydrate in the Shenhu Area, South China Sea [J]. Geoscience, 2022, 36(01): 182-192. |
[8] | LIU Yang, CHEN Qiang, ZOU Changchun, ZHAO Jinhuan, PENG Cheng, SUN Jianye, LIU Changling, WU Caowei. Experimental Dynamic Monitoring of Gas Hydrate Formation: A New ERT Method and Its Effectiveness Analysis [J]. Geoscience, 2022, 36(01): 193-201. |
[9] | HU Gaowei, WU Nengyou, LI Qi, BAI Chenyang, WAN Yizhao, HUANG Li, WANG Daigang, LI Yanlong, CHEN Qiang. Quantitative Method for Selecting Marine Natural Gas Hydrate Production Test Targets [J]. Geoscience, 2022, 36(01): 202-211. |
[10] | LI Yuhang, XIE Ruijie, CHEN Kongquan, ZHUO Junchi, WANG Bin. Characteristics and Main Controlling Factors of High Quality Tight Sandstone Reservoir Source: Take the Xujiahe Formation (5th Member) in Western Sichuan Depression as An Example [J]. Geoscience, 2021, 35(06): 1864-1870. |
[11] | WU Long, LIU Changfeng, LIU Wencan, ZHANG Hongyuan. Detrital Zircon U-Pb Dating and Provenance Analysis for the Triassic Sandstone in Qilianshan Orogen, NE Margin of Tibetan Plateau [J]. Geoscience, 2021, 35(05): 1178-1193. |
[12] | FU Xiaotao, WANG Yimin, SHAO Jianbo, ZHU Songbai, WANG Yong, NIE Yanbo, WANG Bin, DUAN Qiqi. Characteristics and Effect on Productivity of the Sandstone and Fractures in Ultra-deep and Fractured Tight Sandstone Gas Reservoirs:A Case Study of KS2 Gasfield in Kuqa Depression,Tarim Basin [J]. Geoscience, 2021, 35(02): 326-337. |
[13] | HU Yan, HU Yongxing, ZHANG Xiang, YANG Tao, OU Yangjian. Geochemical Features and Geological Significance of Sandstone-type Uranium Deposit in Zhenyuan Area, Southwestern Ordos Basin [J]. Geoscience, 2020, 34(06): 1153-1165. |
[14] | WANG Ai, ZHONG Dakang, LIU Zhongqun, WANG Wei, DU Hongquan, ZHOU Zhiheng, TANG Zicheng. Diagenesis and Porosity Evolution of Calcareous Sandstone Reservoirs of Xu-3 Member in Western Yuanba of Northeastern Sichuan Basin, China [J]. Geoscience, 2020, 34(06): 1193-1204. |
[15] | HU Xiangyang, LIANG Yunan, WU Feng, LIAO Mingguang, ZHANG Hengrong, YANG Dong, YANG Yi, DAI Jin, ZHONG Huaming, WU Yixiong. Genetic Mechanism of Low-Resistivity Neogene Zhujiang Formation in Wenchang X-2 Oilfield of Pearl River Estuary Basin [J]. Geoscience, 2020, 34(02): 390-398. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||