Geoscience ›› 2018, Vol. 32 ›› Issue (01): 113-120.DOI: 10.19657/j.geoscience.1000-8527.2018.01.11
• Geochemistry • Previous Articles Next Articles
YANG Meihong1,2(), LI Zhixiong1,2, LIU Yuyan1,2, MA Shaoqiang1,2, CHEN Jiawei1,2(
)
Received:
2017-10-11
Revised:
2017-11-12
Online:
2018-02-10
Published:
2018-02-05
CLC Number:
YANG Meihong, LI Zhixiong, LIU Yuyan, MA Shaoqiang, CHEN Jiawei. Impacts and Mechanisms of Natural Organic Matter and pH on the Transport of Nanobiochar[J]. Geoscience, 2018, 32(01): 113-120.
柱实验 编号 | HA/ (mg/L) | pH | Meff/% | Mret/% | Mtot/% |
---|---|---|---|---|---|
1 | 0 | 7 | 80.9 | 18.6 | 99.5 |
2 | 15 | 4 | 86.7 | 18.8 | 105.5 |
3 | 15 | 4 | 86.7 | 16.5 | 103.2 |
4 | 15 | 7 | 94.0 | 12.1 | 106.1 |
5 | 15 | 7 | 94.1 | 12.1 | 106.2 |
6 | 15 | 10 | 98.1 | 12.4 | 110.5 |
7 | 15 | 10 | 98.1 | 13.4 | 111.5 |
Table 1 Mass balance of total nanobiochar (Mtot) from effluent (Meff) and retention (Mret)
柱实验 编号 | HA/ (mg/L) | pH | Meff/% | Mret/% | Mtot/% |
---|---|---|---|---|---|
1 | 0 | 7 | 80.9 | 18.6 | 99.5 |
2 | 15 | 4 | 86.7 | 18.8 | 105.5 |
3 | 15 | 4 | 86.7 | 16.5 | 103.2 |
4 | 15 | 7 | 94.0 | 12.1 | 106.1 |
5 | 15 | 7 | 94.1 | 12.1 | 106.2 |
6 | 15 | 10 | 98.1 | 12.4 | 110.5 |
7 | 15 | 10 | 98.1 | 13.4 | 111.5 |
[1] |
SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3): 777-793.
DOI URL |
[2] |
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
DOI URL |
[3] |
SOHI S P. Carbon storage with benefits[J]. Science, 2012, 338:1034-1035.
DOI URL |
[4] |
ZHAO N, ZHAO C, LÜ Y, et al. Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186: 422-429.
DOI URL |
[5] | DENG H, YU H, CHEN M, et al. Sorption of atrazine in tropical soil by biochar prepared from cassava waste[J]. Bioresources, 2014, 9(4): 6627-6643. |
[6] |
LAMICHHANE S, BAL KRISHNA K C, SARUKKALIGE R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review[J]. Chemosphere, 2016, 148:336-353.
DOI PMID |
[7] |
ROGOVSKA N, LAIRD D A, RATHKE S J, et al. Biochar impact on Midwestern Mollisols and maize nutrient availability[J]. Geoderma, 2014, 230/231(7): 340-347.
DOI URL |
[8] |
NOWACK B, BUCHELI T D. Occurrence, behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2007, 150(1):5-22.
DOI PMID |
[9] |
CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environmental Science and Technology, 2005, 39(18): 6881-6895.
PMID |
[10] |
DAI X, BOUTTON T W, GLASER B, et al. Black carbon in a temperate mixed-grass savanna[J]. Soil Biology and Biochemistry, 2005, 37(10): 1879-1881.
DOI URL |
[11] |
HOCKADAY W C, GRANNAS A M, KIM S, et al. The transformation and mobility of charcoal in a fire-impacted watershed[J]. Geochimica et Cosmochimica Acta, 2007, 71(14):3432-3445.
DOI URL |
[12] | 杨雯, 郝丹丹, 徐东昊, 等. 生物炭颗粒在饱和多孔介质中的迁移与滞留[J]. 土壤通报, 2017, 48(2):304-312. |
[13] |
OLESZCZUK P, ĆWIKŁA-BUNDYRA W, BOGUSZ A, et al. Characterization of nanoparticles of biochars from different biomass[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121:165-172.
DOI URL |
[14] |
WANG D J, ZHANG W, HAO X Z, et al. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size[J]. Environmental Science and Technology, 2013, 47(2):821-828.
DOI PMID |
[15] |
WANG D J, ZHANG W, ZHOU D M. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand[J]. Environmental Science and Technology, 2013, 47(10):5154-5161.
DOI PMID |
[16] |
TIAN X, LI T, YANG K, et al. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes[J]. Chemosphere, 2012, 89:1316-1322.
DOI PMID |
[17] | 胡波, 张会兰, 王彬, 等. 重庆缙云山地区森林土壤酸化特征[J]. 长江流域资源与环境, 2015, 24(2):300-309. |
[18] | 焦庆先, 周连仁. 不同厚度黑土覆盖对苏打草甸碱土修复效果的影响[J]. 东北农业大学学报, 2011, 42(11):121-125. |
[19] | 景明, 李烨, 陈盈余, 等. 土壤中添加生物炭对Cr(VI)的迁移锁定作用研究[J]. 现代地质, 2014, 28(6):1194-1201. |
[20] |
ZHOU D M, WANG D J, LONG C, et al. Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength[J]. Journal of Soils and Sediments, 2011, 11(3):491-503.
DOI URL |
[21] |
TUFENKJI N, ELIMELECH M. Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions[J]. Langmuir, 2004, 20 (25):10818-10828.
PMID |
[22] |
HAN Y, HWANG G, PARK S, et al. Stability behavior of carboxyl-functionalized carbon black nanoparticles: role of solution chemistry and humic acid[J]. Environmental Science: Nano, 2017, 4 (4):800-810.
DOI URL |
[23] |
HAN B, LIU W, ZHAO X, et al. Transport of multi-walled carbon nanotubes stabilized by carboxymethyl cellulose and starch in saturated porous media: Influences of electrolyte, clay and humic acid[J]. Science of the Total Environment, 2017, 599/600:188-197.
DOI URL |
[24] |
CHEN M, WANG D J, YANG F, et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution, 2017, 230:540-549.
DOI PMID |
[25] |
CALERO A J, ONTIVEROS-ORTEGA A, ARANDA V, et al. Humic acid adsorption and its role in colloidal-scale aggregation determined with the zeta potential, surface free energy and the extended-DLVO theory[J]. European Journal of Soil Science, 2017, 68:491-503.
DOI URL |
[26] |
SHARMA P, BAO D, FAGERLUND F. Deposition and mobilization of functionalized multiwall carbon nanotubes in saturated porous media: effect of grain size, flow velocity and solution chemistry[J]. Environmental Earth Sciences, 2014, 72(8):3025-3035.
DOI URL |
[27] |
YANG J, BITTER J L, SMITH B A, et al. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter[J]. Environmental Science and Technology, 2013, 47(24):14034-14043.
DOI PMID |
[1] | ZHANG Zhaochong, WANG Huaihong, XIE Qiuhong, SHEN Lijun, ZHU Yuzhen, LÜ Yunhe, JIN Bowen. Genetic Mechanism of the “Yucheng-Type” High-Grade Skarn Iron Deposits [J]. Geoscience, 2024, 38(01): 1-12. |
[2] | SUN Shuang, HU Ke, LI Yan, YANG Junpeng. Sediment Transport Characteristics of Mountainous Rivers in Different Climatic Zones of Coastal China [J]. Geoscience, 2022, 36(01): 68-76. |
[3] | LI Yuanling, LIU Jiankang, ZHANG Jiajia, GAO Bo, TIAN You, XIONG Deqing. Characteristics and Potential Hazard of the Chada Collapse in Eastern Tibet [J]. Geoscience, 2021, 35(01): 74-82. |
[4] | WANG Enze, WEI Zhiwei, CAO Xi, YAN Zelong, CHEN Jiawei. Effect of Natural Organic Matter on Removal of Cr(Ⅵ) from Water by Nanoscale ZeroValent Iron [J]. Geoscience, 2016, 30(4): 818-824. |
[5] | WANG Ping, HUANG Shuang-bing, HAN Zhan-tao, MA Li-sha, ZHANG Wei. A Chemical Site’s Pollution Risk Prediction to the Proposed Reservoir Based on Solute Transport Simulation [J]. Geoscience, 2015, 29(2): 307-315. |
[6] | LI Chen-Hua, CHEN Jia-Wei. A Study on Bentonite supported Nano Iron for Removal of Cr (Ⅵ) in Groundwater [J]. Geoscience, 2012, 26(5): 932-938. |
[7] | LI Shi-Jun,LIU Li-Cai,ZHENG Fan-Dong,JIANG Jian. Numerical Evaluation of Aquifer Heat Load Capacity on Groundwater Heatpump and Its Utilization: By a Case of Beijing Plain [J]. Geoscience, 2011, 25(2): 370-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||