现代地质 ›› 2018, Vol. 32 ›› Issue (03): 453-467.DOI: 10.19657/j.geoscience.1000-8527.2018.001
严桃桃1(), 吴轩2, 权养科3, 龚庆杰1(
), 李晓蕾2, 王萍3, 李睿堃1
收稿日期:
2018-03-15
修回日期:
2018-04-17
出版日期:
2018-06-10
发布日期:
2023-09-22
通讯作者:
龚庆杰
作者简介:
龚庆杰,男,博士,教授,博士生导师,1972年出生,地球化学专业,主要从事地球化学教学与科研工作。Email: qjiegong@cugb.edu.cn。基金资助:
YAN Taotao1(), WU Xuan2, QUAN Yangke3, GONG Qingjie1(
), LI Xiaolei2, WANG Ping3, LI Ruikun1
Received:
2018-03-15
Revised:
2018-04-17
Online:
2018-06-10
Published:
2023-09-22
Contact:
GONG Qingjie
摘要:
不活动元素的稳定性使得风化岩石、土壤和水系沉积物等风化产物能够保留新鲜母岩的元素特征,它们之间的含量变化趋势有可能从母岩传递到其风化产物中,这类似于生物学中基因遗传。仿照生物学中基因的特性提出了地球化学基因的概念及其构建方法,为了比较地球化学基因的相似程度进而提出基因相似度的概念及其计算方法。以风化过程中11种不活动元素为例,基于中国酸性岩、中性岩、基性岩的元素丰度数据构建了表征岩石及其风化产物地球化学特性的岩性地球化学基因,其元素序列为:Al2O3→SiO2→P→Ti→La→Fe2O3→Th→Zr→Nb→Y→U。利用豫西熊耳山地区安山岩风化剖面、残坡积—沟系土剖面、化探详查水系沉积物和区域化探水系沉积物4种比例尺尺度的样品对构建的岩性地球化学基因进行了检验,结果发现岩性地球化学基因在风化过程中具有很好的遗传性(从岩石到风化产物)和继承性(从土壤到其源岩),利用岩性地球化学基因可以对土壤样品进行物源示踪。源自同一母岩的水系沉积物和土壤之间在岩性地球化学基因方面具有很好的相似性(同源风化产物之间)。基于中国区域化探水系沉积物调查数据,可以构建岩性地球化学基因库来对岩石及其风化产物样品进行溯源分析, 在地质、环境、法庭等科学领域具有潜在应用前景。
中图分类号:
严桃桃, 吴轩, 权养科, 龚庆杰, 李晓蕾, 王萍, 李睿堃. 从岩石到土壤再到水系沉积物:风化过程的岩性地球化学基因[J]. 现代地质, 2018, 32(03): 453-467.
YAN Taotao, WU Xuan, QUAN Yangke, GONG Qingjie, LI Xiaolei, WANG Ping, LI Ruikun. Heredity, Inheritance and Similarity of Element Behaviors Among Parent Rocks and Their Weathered Products: A Geochemical Lithogene[J]. Geoscience, 2018, 32(03): 453-467.
参数 | 质量带出(活动元素) | 质量守恒(不活动元素) | 质量带入(活动元素) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
极度 | 强烈 | 中等 | 微弱 | 轻微带出 | 完好守恒 | 轻微带入 | 微弱 | 中等 | 强烈 | 极度 | |||||||
质量分数 | 现存质量/原岩质量 | 原岩质量/现存质量 | |||||||||||||||
<20 | 20~40 | 40~60 | 60~80 | 80~90 | 90~100 | 90~80 | 80~60 | 60~40 | 40~20 | <20 | |||||||
质量迁移量Xgp | <-80 | -80~-40 | -60~-40 | -40~-20 | -20~-10 | -10~11 | 11~25 | 25~67 | 67~150 | 150~400 | > 400 |
表1 风化过程中元素质量迁移的定性描述
Table 1 Qualitative descriptions of element mass transport during weathering
参数 | 质量带出(活动元素) | 质量守恒(不活动元素) | 质量带入(活动元素) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
极度 | 强烈 | 中等 | 微弱 | 轻微带出 | 完好守恒 | 轻微带入 | 微弱 | 中等 | 强烈 | 极度 | |||||||
质量分数 | 现存质量/原岩质量 | 原岩质量/现存质量 | |||||||||||||||
<20 | 20~40 | 40~60 | 60~80 | 80~90 | 90~100 | 90~80 | 80~60 | 60~40 | 40~20 | <20 | |||||||
质量迁移量Xgp | <-80 | -80~-40 | -60~-40 | -40~-20 | -20~-10 | -10~11 | 11~25 | 25~67 | 67~150 | 150~400 | > 400 |
参数 | SiO2 | Al2O3 | Fe2O3 | Ti | P | La | Zr | Nb | Th | U | Y | 数据来源及构建步骤 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 53.45 | 13.02 | 9.24 | 6 255 | 631 | 30.6 | 146 | 9.4 | 1.8 | 0.35 | 22.1 | 马云涛等[ |
UCC | 65.90 | 15.19 | 5.00 | 3 000 | 580 | 30 | 190 | 12 | 10.7 | 2.8 | 22 | Taylor和Mclennan[ |
CN | 0.81 | 0.86 | 1.85 | 2.09 | 1.09 | 1.02 | 0.77 | 0.78 | 0.17 | 0.13 | 1.00 | 步骤(2) |
Δi | 0.02 | 0.33 | 0.05 | -0.28 | -0.03 | -0.12 | 0.01 | -0.67 | -0.13 | 0.91 | 步骤(3) | |
gi | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 步骤(4) |
GeneB1 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 步骤(5) |
表2 某岩石样品B1的地球化学基因构建步骤示例
Table 2 Illustration of the coding process of geochemical gene for sample B1
参数 | SiO2 | Al2O3 | Fe2O3 | Ti | P | La | Zr | Nb | Th | U | Y | 数据来源及构建步骤 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | 53.45 | 13.02 | 9.24 | 6 255 | 631 | 30.6 | 146 | 9.4 | 1.8 | 0.35 | 22.1 | 马云涛等[ |
UCC | 65.90 | 15.19 | 5.00 | 3 000 | 580 | 30 | 190 | 12 | 10.7 | 2.8 | 22 | Taylor和Mclennan[ |
CN | 0.81 | 0.86 | 1.85 | 2.09 | 1.09 | 1.02 | 0.77 | 0.78 | 0.17 | 0.13 | 1.00 | 步骤(2) |
Δi | 0.02 | 0.33 | 0.05 | -0.28 | -0.03 | -0.12 | 0.01 | -0.67 | -0.13 | 0.91 | 步骤(3) | |
gi | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 步骤(4) |
GeneB1 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 步骤(5) |
岩石 | 元素含量 | 数据来源 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | P | Ti | La | Fe2O3 | Th | Zr | Nb | Y | U | ||||
UCC | 15.19 | 65.90 | 580 | 3 000 | 30 | 5.00 | 10.7 | 190 | 12 | 22 | 2.8 | Taylor和Mclennan[ | ||
酸性岩 | 14.20 | 70.85 | 430 | 1 770 | 40 | 1.22 | 14.5 | 160 | 15 | 22 | 2.5 | 迟清华等[ | ||
中性岩 | 16.42 | 57.79 | 1 200 | 5 200 | 35 | 2.98 | 4.9 | 180 | 10.4 | 18 | 1.15 | 迟清华等[ | ||
基性岩 | 15.54 | 48.68 | 1 570 | 9 470 | 24 | 4.18 | 2.8 | 150 | 19 | 17 | 0.70 | 迟清华等[ | ||
排序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 本文 | ||
岩石 | 基因序列值 | R/% | ||||||||||||
Al2O3 | SiO2 | P | Ti | La | Fe2O3 | Th | Zr | Nb | Y | U | ||||
酸性岩 | 1 | 1 | 0 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 1 | 100 | 50 | 40 |
中性岩 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 50 | 100 | 80 |
基性岩 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 40 | 80 | 100 |
表3 岩性地球化学基因元素丰度及其排序与基因序列值
Table 3 Abundances of 11 immobile elements in the acidic, intermediate, and basic rocks in China to illustrate the sequence and code of the geochemical lithogenes and their similarities
岩石 | 元素含量 | 数据来源 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | P | Ti | La | Fe2O3 | Th | Zr | Nb | Y | U | ||||
UCC | 15.19 | 65.90 | 580 | 3 000 | 30 | 5.00 | 10.7 | 190 | 12 | 22 | 2.8 | Taylor和Mclennan[ | ||
酸性岩 | 14.20 | 70.85 | 430 | 1 770 | 40 | 1.22 | 14.5 | 160 | 15 | 22 | 2.5 | 迟清华等[ | ||
中性岩 | 16.42 | 57.79 | 1 200 | 5 200 | 35 | 2.98 | 4.9 | 180 | 10.4 | 18 | 1.15 | 迟清华等[ | ||
基性岩 | 15.54 | 48.68 | 1 570 | 9 470 | 24 | 4.18 | 2.8 | 150 | 19 | 17 | 0.70 | 迟清华等[ | ||
排序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 本文 | ||
岩石 | 基因序列值 | R/% | ||||||||||||
Al2O3 | SiO2 | P | Ti | La | Fe2O3 | Th | Zr | Nb | Y | U | ||||
酸性岩 | 1 | 1 | 0 | 1 | 2 | 0 | 2 | 0 | 2 | 1 | 1 | 100 | 50 | 40 |
中性岩 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 50 | 100 | 80 |
基性岩 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 40 | 80 | 100 |
图2 岩性地球化学基因元素序列蛛网图(上陆壳数据据Taylor和Mclennan[45]) Spider diagram to illustrate the geochemical lithogenes of the acidic, intermediate, and basic rocks in China(UCC data from Taylor和Mclennan[45])
Fig.2
图3 研究区地质简图及采样点位置示意图(据龚庆杰等[17]修编) (a)豫西熊耳山地区地质简图;(b)牛头沟矿区地质简图;(c)安山岩风化壳剖面D06样品采集点位图;(d)残坡积与沟系土壤剖面样品点位图(菱形黑点为土壤样品点位,实线代表沟系,箭头标明水系沉积物运移方向)
Fig.3 Simplified geological map showing the sampling locations (modified after Gong et al.[17])
样品编号 | 采样深度/cm | 样品描述 | WIG | 岩性基因代码 | RB1 | RB11 |
---|---|---|---|---|---|---|
B1 | 650 | 致密块状安山岩 | 88.4 | 11220202120 | 100 | 85 |
B2 | 570 | 致密块状安山岩 | 89.6 | 11220202020 | 95 | 80 |
B3 | 420 | 强风化岩石(残留结构) | 87.2 | 11220202120 | 100 | 85 |
B4 | 350 | 强风化岩石(残留结构) | 65.0 | 11220202200 | 85 | 80 |
B5 | 300 | 强风化岩石(残留结构) | 61.1 | 11220201210 | 85 | 80 |
B6 | 200 | 风化碎屑(残留结构) | 54.4 | 10220202210 | 85 | 80 |
B7 | 150 | 风化碎屑(结构消失) | 48.5 | 10220202210 | 85 | 80 |
B8 | 125 | 褐色风化土壤(含明显碎屑) | 48.4 | 11220202200 | 85 | 80 |
B9 | 80 | 褐色风化土壤(含碎屑) | 45.8 | 11220202200 | 85 | 80 |
B10 | 50 | 褐色风化土壤(含碎屑) | 43.3 | 10120202110 | 85 | 90 |
B11 | 25 | 灰褐色根系土壤(含碎屑) | 40.9 | 11120102110 | 85 | 100 |
表4 D06风化剖面样品描述及其基因计算结果
Table 4 Sample descriptions of D06 weathering profile and their geochemical lithogenes and similarities
样品编号 | 采样深度/cm | 样品描述 | WIG | 岩性基因代码 | RB1 | RB11 |
---|---|---|---|---|---|---|
B1 | 650 | 致密块状安山岩 | 88.4 | 11220202120 | 100 | 85 |
B2 | 570 | 致密块状安山岩 | 89.6 | 11220202020 | 95 | 80 |
B3 | 420 | 强风化岩石(残留结构) | 87.2 | 11220202120 | 100 | 85 |
B4 | 350 | 强风化岩石(残留结构) | 65.0 | 11220202200 | 85 | 80 |
B5 | 300 | 强风化岩石(残留结构) | 61.1 | 11220201210 | 85 | 80 |
B6 | 200 | 风化碎屑(残留结构) | 54.4 | 10220202210 | 85 | 80 |
B7 | 150 | 风化碎屑(结构消失) | 48.5 | 10220202210 | 85 | 80 |
B8 | 125 | 褐色风化土壤(含明显碎屑) | 48.4 | 11220202200 | 85 | 80 |
B9 | 80 | 褐色风化土壤(含碎屑) | 45.8 | 11220202200 | 85 | 80 |
B10 | 50 | 褐色风化土壤(含碎屑) | 43.3 | 10120202110 | 85 | 90 |
B11 | 25 | 灰褐色根系土壤(含碎屑) | 40.9 | 11120102110 | 85 | 100 |
样品编号 | 样品类型 | WIG | 基因代码 | RB1 | RB11 |
---|---|---|---|---|---|
D28 | 残坡积土壤 | 61.1 | 11220202120 | 100 | 85 |
D29 | 残坡积土壤 | 64.0 | 11220202110 | 95 | 90 |
D30 | 残坡积土壤 | 61.9 | 11220202110 | 95 | 90 |
D31 | 残坡积土壤 | 55.9 | 11220102110 | 90 | 95 |
D32 | 残坡积土壤 | 60.1 | 11220202210 | 90 | 85 |
D33 | 残坡积土壤 | 60.0 | 11220202200 | 85 | 80 |
D34 | 冲洪积土壤 | 59.9 | 11220202110 | 95 | 90 |
D35 | 冲洪积土壤 | 67.9 | 11220202110 | 95 | 90 |
D36 | 冲洪积土壤 | 76.8 | 11220202120 | 100 | 85 |
D37 | 冲洪积土壤 | 66.5 | 11220202210 | 90 | 85 |
D38 | 冲洪积土壤 | 70.0 | 11220202210 | 90 | 85 |
表5 残坡积—沟系土剖面样品描述及其基因计算结果
Table 5 Sample descriptions of the lateral surficial soil profile and their geochemical lithogenes and similarities
样品编号 | 样品类型 | WIG | 基因代码 | RB1 | RB11 |
---|---|---|---|---|---|
D28 | 残坡积土壤 | 61.1 | 11220202120 | 100 | 85 |
D29 | 残坡积土壤 | 64.0 | 11220202110 | 95 | 90 |
D30 | 残坡积土壤 | 61.9 | 11220202110 | 95 | 90 |
D31 | 残坡积土壤 | 55.9 | 11220102110 | 90 | 95 |
D32 | 残坡积土壤 | 60.1 | 11220202210 | 90 | 85 |
D33 | 残坡积土壤 | 60.0 | 11220202200 | 85 | 80 |
D34 | 冲洪积土壤 | 59.9 | 11220202110 | 95 | 90 |
D35 | 冲洪积土壤 | 67.9 | 11220202110 | 95 | 90 |
D36 | 冲洪积土壤 | 76.8 | 11220202120 | 100 | 85 |
D37 | 冲洪积土壤 | 66.5 | 11220202210 | 90 | 85 |
D38 | 冲洪积土壤 | 70.0 | 11220202210 | 90 | 85 |
统计参数 | WIG | RB1 | RB11 |
---|---|---|---|
最大值 | 431 | 100 | 95 |
最小值 | 29 | 25 | 40 |
中位数 | 63 | 75 | 80 |
平均值 | 67 | 74 | 75 |
标准差 | 37 | 18 | 13 |
表6 牛头沟矿区1∶5万化探详查样品基因参数统计
Table 6 Statistical parameters of WIG and similarities of geochemical lithogenes in the samples from the areal stream sediment survey with a scale of 1∶50,000
统计参数 | WIG | RB1 | RB11 |
---|---|---|---|
最大值 | 431 | 100 | 95 |
最小值 | 29 | 25 | 40 |
中位数 | 63 | 75 | 80 |
平均值 | 67 | 74 | 75 |
标准差 | 37 | 18 | 13 |
图5 1∶5万化探样品基因点位与相似度图 (a)以D06柱样新鲜安山岩B1样品做对比;(b)以D06柱样顶部土壤B11样品做对比;灰色区域标示具有相似岩性地球化学基因的范围
Fig. 5 Similarities of geochemical lithogenes in the samples from the areal stream sediment survey with a scale of 1:50, 000
统计参数 | WIG | RB1 | RB11 |
---|---|---|---|
最大值 | 421 | 100 | 100 |
最小值 | 24 | 15 | 30 |
中位值 | 53 | 70 | 80 |
平均值 | 62 | 69 | 76 |
标准差 | 31 | 18 | 16 |
表7 熊耳山地区1∶20万化探样品基因参数统计
Table 7 Statistical parameters of WIG and similarities of geochemical lithogenes in the samples from the areal stream sediment survey with a scale of 1∶200,000
统计参数 | WIG | RB1 | RB11 |
---|---|---|---|
最大值 | 421 | 100 | 100 |
最小值 | 24 | 15 | 30 |
中位值 | 53 | 70 | 80 |
平均值 | 62 | 69 | 76 |
标准差 | 31 | 18 | 16 |
图6 1∶20万水系沉积物样品基因点位及相似度图(a)以D06柱样新鲜安山岩B1样品做对比;(b)以D06柱样顶部土壤B11样品做对比;灰色区域标示具有相似岩性地球化学基因的范围
Fig.6 Similarities of geochemical lithogenes in the samples from the areal stream sediment survey with a scale of 1∶200,000
[1] |
NESBITT H W, MARKOVICS G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
DOI URL |
[2] |
DUZGOREN-AYDIN N S, AYDIN A, MALPAS J. Reassessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology, 2002, 63(1/2): 99-119.
DOI URL |
[3] |
GONG Q J, DENG J, YANG L Q, et al. Behavior of major and trace elements during weathering of sericite-quartz schist[J]. Journal of Asian Earth Sciences, 2011, 42: 1-13.
DOI URL |
[4] | 牛耀龄. 全球构造与地球动力学——岩石学与地球化学方法应用实例[M]. 北京: 科学出版社, 2013: 1-307. |
[5] |
YANG L Q, DENG J, DILEK Y, et al. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced trans tensional tectonics[J]. Lithos, 2016, 245: 258-273.
DOI URL |
[6] |
DENG J, WANG Q F, LI G J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China[J]. Gondwana Research, 2017, 50: 216-266.
DOI URL |
[7] |
WINCHESTER J A, FLOYD P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4): 325-343.
DOI URL |
[8] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345.
DOI URL |
[9] | ROLLISON H R. 岩石地球化学[M]. 杨学明, 杨晓勇, 陈双喜, 译. 合肥: 中国科学技术大学出版社, 2000: 1-275. |
[10] | NIU Y L, O’HARA M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research (Solid Earth), 2003, 108: B4. |
[11] |
PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
DOI URL |
[12] | HERRON M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 1988, 58(5): 820-829. |
[13] |
FROST B R, BARNES C G, COLLINS W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2033-2048.
DOI URL |
[14] |
PEARCE J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48.
DOI URL |
[15] |
GONG Q J, ZHANG G X, ZHANG J, et al. Behavior of REE fractionation during weathering of Dolomite Regolith Profile in Southwest China[J]. Acta Geologica Sinica (English Edition), 2010, 84(6): 1439-1447.
DOI URL |
[16] |
DENG J, WANG Q F, LI G J, et al. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 2015, 70(3): 457-485.
DOI URL |
[17] | 龚庆杰, 喻劲松, 韩东昱, 等. 豫西牛头沟金矿地球化学找矿模型与定量预测[M]. 北京: 冶金工业出版社, 2015: 1-174. |
[18] | YANG L Q, DILEK Y, WANG Z L, et al. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton[J]. Geological Magazine, 2017, 154(2): doi.org/10.1017/S0016756816001230. |
[19] | LE MAITRE R W. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford: Blackwell Scientific Publications, 1989:1-193. |
[20] |
PANAHI A, YOUNG G M, RAINBIRD R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
DOI URL |
[21] |
BRAUN J J, DESCLOITRES M, RIOTTE J, et al. Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed, South India[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 935-961.
DOI URL |
[22] |
POKROVSKY O S, SCHOTT J, DUPRÉ B. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3239-3260.
DOI URL |
[23] |
DAS A, KRISHNASWAMI S. Elemental geochemistry of river sediments from the Deccan Traps, India: Implications to sources of elements and their mobility during basalt-water interaction[J]. Chemical Geology, 2007, 242(1/2): 232-254.
DOI URL |
[24] | 严桃桃, 龚庆杰, 李金哲, 等. Al2O3/Ti: 风化与蚀变过程中的原岩示踪[J]. 岩石学报, 2016, 32(8): 2425-2432. |
[25] | 蒋敬业, 程建萍, 祁士华, 等. 应用地球化学[M]. 武汉: 中国地质大学出版社, 2006: 1-340. |
[26] |
GONG Q J, DENG J, WANG C M, et al. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China[J]. Journal of Geochemical Exploration, 2013, 128: 14-24.
DOI URL |
[27] |
NDJIGUI P D, BILONG P, BITOM D, et al. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, South-East Cameroon[J]. Journal of African Earth Sciences, 2008, 50(5): 305-328.
DOI URL |
[28] | 谷静, 黄智龙, 金中国, 等. 黔北务—正—道铝土矿床不活动元素地球化学与质量平衡计算[J]. 矿物学报, 2011, 31(3): 94-102. |
[29] | SAYIT K. Immobile trace element systematics of oceanic island basalts: The role of oceanic lithosphere in creating the geochemical diversity[J]. Ofioliti, 2013, 38(1): 101-120. |
[30] | 张德会, 赵伦山. 地球化学[M]. 北京: 地质出版社, 2013: 1-543. |
[31] |
GONG Q J, DENG J, JIA Y J, et al. Empirical equations to describe trace element behaviors due to rock weathering in China[J]. Journal of Geochemical Exploration, 2015, 152: 110-117.
DOI URL |
[32] |
FLOYD P A, WINCHESTER J A. Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements[J]. Chemical Geology, 1978, 21 (3): 291-306.
DOI URL |
[33] | HE Z J, LI J Y, MO S G, et al. Geochemical discriminations of sandstones from the Mohe Foreland basin, northeastern China: Tectonic setting and provenance[J]. Science in China: Series D, 2005, 48 (5): 613-621. |
[34] |
YAN Y, XIA B, LIN G, et al. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleo environment and paleo climate at the K/T boundary[J]. Sedimentary Geology, 2007, 197 (1/2): 127-140.
DOI URL |
[35] |
KASANZU C, MABOKO M A H, MANYA S. Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering[J]. Precambrian Research, 2008, 164(3): 201-213.
DOI URL |
[36] | 张爱滨, 刘明, 廖永杰, 等. 黄河沉积物向渤海湾扩散的沉积地球化学示踪[J]. 海洋科学进展, 2015, 33(2): 246-256. |
[37] |
CALAGARI A A, ABEDINI A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran[J]. Journal of Geochemical Exploration, 2007, 94(1): 1-18.
DOI URL |
[38] | 侯莹玲. 用合山组碎屑岩的地球化学特征示踪桂西晚二叠世喀斯特型铝土矿的物质来源[D]. 广州: 中国科学院广州地球化学研究所, 2017: 1-158. |
[39] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-148. |
[40] |
XIE X J, CHENG H X. Sixty years of exploration geochemistry in China[J]. Journal of Geochemical Exploration, 2014, 139: 4-8.
DOI URL |
[41] | PEARCE J A, PEATE D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1): 251-285. |
[42] |
GRESENS R L. Composition-volume relationships of metasomatism[J]. Chemical Geology, 1967, 2(67): 47-65.
DOI URL |
[43] |
BRIMHALL G H, DIETRICH W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 1987, 51 (3): 567-587.
DOI URL |
[44] |
MACLEAN W H, KRANIDIOTIS P. Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Mattagami, Quebec[J]. Economic Geology, 1987, 82(4): 951-962.
DOI URL |
[45] | TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 293-301. |
[46] | 吴发富, 龚庆杰, 石建喜, 等. 熊耳山矿集区金矿控矿地质要素分析[J]. 地质与勘探, 2012, 48(5): 865-875. |
[47] | 范宏瑞, 谢奕汉, 王英兰. 豫西花山花岗岩基岩石学和地球化学特征及其成因[J]. 岩石矿物学杂志, 1994, 13(1): 19-32. |
[48] | 毕献武, 骆庭川. 洛宁花山岩体地球化学特征及成因的探讨[J]. 矿物学报, 1995, 15 (4): 433-441. |
[49] | 李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京: 中国地质大学(北京), 2005: 1-135. |
[50] |
DENG J, GONG Q J, WANG C M, et al. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong’ershan region, Central China: An overview with new zircon U-Pb geochronology data on quartz porphyries[J]. Journal of Asian Earth Sciences, 2014, 79: 161-172.
DOI URL |
[51] |
DENG J, WANG C M, BAGAS L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermo chronometry[J]. Mineralium Deposita, 2015, 50: 987-1006.
DOI URL |
[52] |
YANG L Q, DENG J, GUO R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong gold province[J]. Geoscience Frontiers, 2016, 7(3): 419-430.
DOI URL |
[53] |
YANG L Q, DENG J, WANG Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111: 105-126.
DOI URL |
[54] |
YANG L Q, DENG J, DILEK Y, et al. Structure, geochronology, and petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone, Qinling Orogen, China[J]. The Geological Society of America Bulletin, 2015, 127: 1831-1854.
DOI URL |
[55] |
YANG L Q, DENG J, LI N, et al. Isotopic constraints on sources and ore genesis of gold deposits in the Yangshan Gold Belt, West Qinling, central China[J]. Journal of Geochemical Exploration, 2016, 168: 103-118.
DOI URL |
[56] |
ZHANG J, CHEN Y J, PIRAJNO F, et al. Geology, C-H-O-S-Pb isotope systematics and geochronology of the Yindongpo golddeposit, Tongbai Mountains, central China: Implication for ore genesis[J]. Ore Geology Reviews, 2013, 53: 343-356.
DOI URL |
[57] |
ZHANG J, CHEN Y J, SU Q W, et al. Geology and genesis of the Xiaguan Ag-Pb-Zn orefield in Qinling orogen,Henan province, China: Fluid inclusion and isotope constraints[J]. Ore Geology Reviews, 2016, 76: 79-93.
DOI URL |
[58] |
DENG J, WANG Q F, LI G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299.
DOI URL |
[59] |
DENG J, WANG Q F, LI G J, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China[J]. Gondwana Research, 2014, 26: 419-437.
DOI URL |
[60] |
ZHANG J, DENG J, CHEN H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26: 557-575.
DOI URL |
[61] |
CHEN Y J, PIRAJNO F, LI N, et al. Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling Orogen, Henan Province, China: Implications for ore genesis[J]. Ore Geology Reviews, 2009, 35(2): 245-261.
DOI URL |
[62] |
DENG J, WANG Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274.
DOI URL |
[63] | 马云涛, 龚庆杰, 韩东昱, 等. 安山岩风化过程中元素行为——以豫西熊耳山地区为例[J]. 地质与勘探, 2015, 51(3): 545-554. |
[64] | 贾玉杰, 龚庆杰, 韩东昱, 等. 化探方法技术之取样粒度研究——以豫西牛头沟金矿1∶5万化探普查为例[J]. 地质与勘探, 2013, 49(5): 928-938. |
[65] | 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 31(1):92-103. |
[66] | 徐夕生. 火成岩岩石学[M]. 北京: 科学出版社, 2010: 1-346. |
[67] |
MA J L, WEI G J, XU Y G, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan island, south China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3223-3237.
DOI URL |
[68] |
THORNTON J I, MCLAREN A D. Enzymatic characterization of soil evidence[J]. Journal of Forensic Sciences, 1975, 20(4): 674-692.
PMID |
[69] | HIRAOKA Y. Characterization of weathered products from granites around southern Lake Biwa, central Japan: application to forensic geology[J]. Journal of the Geological Society of Japan, 1997, 103(1): 36-46. |
[70] | 雷蒙德·默里. 源自地球的证据:法庭地质学与犯罪侦查[M]. 王元凤, 金振奎, 译. 北京: 中国人民大学出版社, 2013: 1-193. |
[71] |
王萍, 刘玲利, 郭洪玲, 等. 泥土物证的理化综合检验分析[J]. 刑事技术, 2016, 41(6): 454-458.
DOI |
[1] | 张改侠, 孙金佳杰, 龚庆杰, 江彪, 严桃桃. 云南潞西上芒岗金矿区白云岩风化的地球化学基因[J]. 现代地质, 2023, 37(03): 801-812. |
[2] | 黎介, 刘宁强, 龚庆杰, 吴轩, 严桃桃. 基于微量元素岩性地球化学基因的构建与检验[J]. 现代地质, 2021, 35(05): 1459-1470. |
[3] | 左玉山, 龚庆杰, 江彪, 张通, 吴轩, 严桃桃. 内蒙古双尖子山银多金属矿床区域地球化学特征[J]. 现代地质, 2021, 35(05): 1411-1424. |
[4] | 龚庆杰, 吴轩, 严桃桃, 刘宁强, 李晓蕾, 李睿堃, 刘梦翔. 地球化学基因的构建与检验[J]. 现代地质, 2020, 34(05): 865-882. |
[5] | 彭媛媛, 康志宏, 李伟奇, 韩慧宇, 谭龙. 武威盆地石炭系泥页岩元素地球化学特征及意义[J]. 现代地质, 2017, 31(03): 574-586. |
[6] | 郭望,张云鹏,李永红,姜亭,杨海星,党洪量. 柴达木盆地北缘侏罗系大煤沟组7段油页岩低放射性控制因素[J]. 现代地质, 2016, 30(4): 905-913. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||