现代地质 ›› 2021, Vol. 35 ›› Issue (06): 1769-1788.DOI: 10.19657/j.geoscience.1000-8527.2021.23
邢碧倩1(), 施光海1(
), 张锦洪2, 龙楚3, 张昱1, 何立言3, 胡汝杰4
收稿日期:
2021-03-10
修回日期:
2021-04-26
出版日期:
2021-12-10
发布日期:
2022-02-14
通讯作者:
施光海
作者简介:
施光海,男,教授,博士生导师,1968年出生,矿物学、岩石学、矿床学专业,主要从事宝玉石矿床学方面的研究及教学工作。Email: shigh@cugb.edu.cn。基金资助:
XING Biqian1(), SHI Guanghai1(
), ZHANG Jinhong2, LONG Chu3, ZHANG Yu1, HE Liyan3, HU Rujie4
Received:
2021-03-10
Revised:
2021-04-26
Online:
2021-12-10
Published:
2022-02-14
Contact:
SHI Guanghai
摘要:
危地马拉目前已成为仅次于缅甸的第二大翡翠原料供应地。这两个产地翡翠辨别的需求愈发迫切,且应用意义较大。采用显微镜观察、电子探针分析及背散射电子照相获得危地马拉蓝水料翡翠的矿物成分及结构构造特征,结合两产地翡翠产出的大地构造环境、自然地理环境、原石特征与矿物成分特征等进行对比分析。总体上,危地马拉翡翠次生原石有一定的磨圆,呈次棱角状,“皮”(风化皮)厚度较薄,较少出现翻砂现象,由“皮”向里,极少甚至几乎不存在“红雾”。相对地,缅甸翡翠次生原石发育显著的球状风化,原石通常有较好的磨圆度,棱角状不明显,“皮”厚度可达数厘米,用手压磨有显著的翻砂现象, “皮”“肉”之间偶可见“红雾”。硬玉与绿辉石成分判别图显示危地马拉翡翠中硬玉和绿辉石呈相对富Ca、贫Na的特征,而缅甸翡翠中硬玉和绿辉石整体呈相对贫Ca、富Na的特征。在Fe含量上,危地马拉翡翠中硬玉的Fe含量较缅甸翡翠中硬玉的Fe含量偏低,而危地马拉翡翠中绿辉石的Fe含量较缅甸翡翠中绿辉石的Fe含量偏高。对翡翠外观特征的充分对比和对判别图的综合分析可应用于实际中翡翠产地的区分。
中图分类号:
邢碧倩, 施光海, 张锦洪, 龙楚, 张昱, 何立言, 胡汝杰. 危地马拉翡翠宝石矿物学特征及其与缅甸翡翠的对比研究[J]. 现代地质, 2021, 35(06): 1769-1788.
XING Biqian, SHI Guanghai, ZHANG Jinhong, LONG Chu, ZHANG Yu, HE Liyan, HU Rujie. Characteristics of the Guatemalan Feicui and Its Comparison to the Myanmar Feicui[J]. Geoscience, 2021, 35(06): 1769-1788.
图1 加勒比海西北部构造单元图(a)及危地马拉硬玉岩区地质简图(b)(据文献[9,47-50]修改) 危地马拉的主要断裂带为:P.波洛奇克(Polochíc)断裂带;M. 莫塔瓜(Motagua)断裂带;J.霍科坦(Jocotán)断裂带;E.古巴榴辉岩带;BM.牙买加蓝山(Blue Mountain)。
Fig.1 Northwestern Caribbean tectonic map (a) and geological sketch of the jadeitite region of Guatemala (b)(modified after references[9,47-50])
图3 样品手标本照片 a.GJ-3呈绿蓝色,质地细腻且透明度好,白色虚线处可见后期结晶细脉;b.GJ-1呈蓝绿色,质地均匀细腻,透明度稍逊于GJ-3;c.G19-8呈浅蓝绿色,为细粒变晶结构,两条白色虚线之间表示后期结晶脉;d.Mp1-1呈淡绿色,具细粒变晶结构;图a-d上部白底照片为自然光顶光照明,图a-d下部黑-灰底照片为透射光照明。
Fig.3 Photographs of hand specimens
编号 | 颜色 | 光泽 | 透明度 | 手标本描述 | 折射率 | 相对密度 |
---|---|---|---|---|---|---|
GJ-3 | 绿蓝色 | 玻璃光泽 | 亚透明 | 基质部分质地细腻且具半定向构造,为隐晶质结构,解理与翠性不显著,透明度好,肉眼可见1条极细的后期结晶脉( | 1.663 | 3.33 |
GJ-1 | 蓝绿色 | 玻璃光泽 | 亚透明 | GJ-1较GJ-3更偏绿色调,结构细腻,为隐晶质结构,解理与翠性不显著,透明度较好( | 1.662 | 3.33 |
G19-8 | 浅蓝绿色 | 玻璃光泽 | 半透明 | 细粒变晶结构,肉眼可见1条后期结晶脉( | 1.657 | 3.22 |
Mp1-1 | 淡绿色 | 玻璃光泽 | 半透明 | “玉肉”呈淡绿色,具有明显的细粒状变晶结构( | 1.659 | 3.23 |
表1 样品宝石学特征
Table 1 Gemological characteristics of the samples
编号 | 颜色 | 光泽 | 透明度 | 手标本描述 | 折射率 | 相对密度 |
---|---|---|---|---|---|---|
GJ-3 | 绿蓝色 | 玻璃光泽 | 亚透明 | 基质部分质地细腻且具半定向构造,为隐晶质结构,解理与翠性不显著,透明度好,肉眼可见1条极细的后期结晶脉( | 1.663 | 3.33 |
GJ-1 | 蓝绿色 | 玻璃光泽 | 亚透明 | GJ-1较GJ-3更偏绿色调,结构细腻,为隐晶质结构,解理与翠性不显著,透明度较好( | 1.662 | 3.33 |
G19-8 | 浅蓝绿色 | 玻璃光泽 | 半透明 | 细粒变晶结构,肉眼可见1条后期结晶脉( | 1.657 | 3.22 |
Mp1-1 | 淡绿色 | 玻璃光泽 | 半透明 | “玉肉”呈淡绿色,具有明显的细粒状变晶结构( | 1.659 | 3.23 |
成分 | 样品号 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GJ-3 | GJ-1 | G19-8 | Mp1-1 | ||||||||||||||||||
250-3 | 250-4 | 600-3 | 1 | 3 | 5 | 8 | 3 | 4 | 1 | 7 | 2 | ||||||||||
SiO2 | 59.62 | 58.02 | 56.42 | 56.71 | 57.34 | 55.34 | 54.33 | 59.23 | 59.11 | 57.63 | 56.89 | 59.18 | |||||||||
TiO2 | 00.14 | 00.63 | 00.12 | 00.21 | 0 | 00.16 | 00.17 | 00.06 | 00.13 | 00.03 | 00.05 | 00.04 | |||||||||
Al2O3 | 24.28 | 22.33 | 12.83 | 20.56 | 26.87 | 10.63 | 13.43 | 23.28 | 25.20 | 11.32 | 12.15 | 26.27 | |||||||||
Cr2O3 | 00.05 | 0 | 00.09 | 0 | 0 | 0 | 00.01 | 00.01 | 0 | 0 | 00.04 | 0 | |||||||||
Fe2O3 | 0 | 0.28 | 00.21 | 02.44 | 00.14 | 02.75 | 02.51 | 0 | 0 | 0 | 0 | 0 | |||||||||
FeO | 00.37 | 0.77 | 02.85 | 00.12 | 00.01 | 00.13 | 00.12 | 00.88 | 00.19 | 02.93 | 01.90 | 00.05 | |||||||||
MnO | 0 | 0 | 00.02 | 00.01 | 00.02 | 00.12 | 0 | 00.03 | 00.05 | 00.09 | 00.17 | 0 | |||||||||
MgO | 0 | 01.08 | 07.06 | 02.17 | 00.04 | 10.12 | 08.62 | 01.24 | 00.08 | 07.55 | 07.83 | 00.01 | |||||||||
CaO | 00.15 | 01.61 | 11.58 | 04.83 | 00.71 | 14.32 | 11.87 | 01.82 | 00.21 | 12.24 | 12.58 | 00.08 | |||||||||
Na2O | 14.46 | 14.05 | 08.04 | 13.54 | 15.33 | 07.01 | 08.66 | 13.45 | 14.59 | 07.12 | 07.25 | 15.03 | |||||||||
K2O | 00.03 | 00.01 | 0 | 00.01 | 00.02 | 00.01 | 0 | 00.01 | 00.01 | 00.01 | 0 | 00.01 | |||||||||
总量 | 99.10 | 98.78 | 99.22 | 100.60 | 100.48 | 100.59 | 99.72 | 100.01 | 99.57 | 98.92 | 98.86 | 100.67 | |||||||||
Si | 2.022 | 1.996 | 2.002 | 1.950 | 1.932 | 1.962 | 1.933 | 2.004 | 1.996 | 2.045 | 2.016 | 1.977 | |||||||||
AlⅣ | 0 | 0.004 | 0 | 0.050 | 0.068 | 0.038 | 0.067 | 0 | 0.004 | 0 | 0 | 0.023 | |||||||||
AlⅥ | 0.970 | 0.902 | 0.537 | 0.783 | 0.999 | 0.406 | 0.496 | 0.928 | 0.999 | 0.473 | 0.508 | 1.012 | |||||||||
Ti | 0.004 | 0.016 | 0.003 | 0.005 | 0 | 0.004 | 0.005 | 0.002 | 0.003 | 0.001 | 0.001 | 0.001 | |||||||||
Cr | 0.001 | 0 | 0.003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 | |||||||||
Fe3+ | 0 | 0.007 | 0.006 | 0.063 | 0.004 | 0.156 | 0.233 | 0 | 0 | 0 | 0 | 0 | |||||||||
Fe2+ | 0.011 | 0.022 | 0.085 | 0.003 | 0 | 0 | 0 | 0.025 | 0.005 | 0.088 | 0.057 | 0.001 | |||||||||
Mn | 0 | 0 | 0.001 | 0 | 0.001 | 0.004 | 0 | 0.001 | 0.001 | 0.003 | 0.005 | 0 | |||||||||
Mg | 0 | 0.055 | 0.373 | 0.111 | 0.002 | 0.535 | 0.457 | 0.063 | 0.004 | 0.399 | 0.414 | 0.001 | |||||||||
Ca | 0.005 | 0.059 | 0.440 | 0.178 | 0.026 | 0.544 | 0.453 | 0.066 | 0.008 | 0.465 | 0.478 | 0.003 | |||||||||
Na | 0.951 | 0.937 | 0.553 | 0.903 | 1.002 | 0.482 | 0.597 | 0.882 | 0.955 | 0.490 | 0.498 | 0.974 | |||||||||
K | 0.001 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
总量 | 3.965 | 3.998 | 4.003 | 4.046 | 4.035 | 4.131 | 4.241 | 3.971 | 3.975 | 3.964 | 3.978 | 3.992 | |||||||||
Jd | 99 | 92 | 55 | 77 | 98 | 39 | 49 | 92 | 99 | 50 | 51 | 100 | |||||||||
Aeg | 0 | 01 | 0 | 09 | 0 | 07 | 07 | 0 | 0 | 0 | 0 | 0 | |||||||||
Quad | 01 | 07 | 45 | 14 | 01 | 53 | 44 | 08 | 01 | 50 | 49 | 0 | |||||||||
Wo | 34 | 41 | 49 | 50 | 80 | 47 | 46 | 43 | 41 | 49 | 50 | 060 | |||||||||
En | 0 | 38 | 41 | 31 | 6 | 46 | 47 | 40 | 22 | 42 | 43 | 010 | |||||||||
Fs | 66 | 20 | 10 | 19 | 14 | 07 | 07 | 17 | 37 | 09 | 06 | 029 | |||||||||
矿物 | Jd | Jd | Omp | Jd | Jd | Omp | Omp | Jd | Jd | Omp | Omp | Jd |
表2 辉石电子探针分析数据(wB/%)
Table 2 Electron microprobe analysis of pyroxene (%)
成分 | 样品号 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GJ-3 | GJ-1 | G19-8 | Mp1-1 | ||||||||||||||||||
250-3 | 250-4 | 600-3 | 1 | 3 | 5 | 8 | 3 | 4 | 1 | 7 | 2 | ||||||||||
SiO2 | 59.62 | 58.02 | 56.42 | 56.71 | 57.34 | 55.34 | 54.33 | 59.23 | 59.11 | 57.63 | 56.89 | 59.18 | |||||||||
TiO2 | 00.14 | 00.63 | 00.12 | 00.21 | 0 | 00.16 | 00.17 | 00.06 | 00.13 | 00.03 | 00.05 | 00.04 | |||||||||
Al2O3 | 24.28 | 22.33 | 12.83 | 20.56 | 26.87 | 10.63 | 13.43 | 23.28 | 25.20 | 11.32 | 12.15 | 26.27 | |||||||||
Cr2O3 | 00.05 | 0 | 00.09 | 0 | 0 | 0 | 00.01 | 00.01 | 0 | 0 | 00.04 | 0 | |||||||||
Fe2O3 | 0 | 0.28 | 00.21 | 02.44 | 00.14 | 02.75 | 02.51 | 0 | 0 | 0 | 0 | 0 | |||||||||
FeO | 00.37 | 0.77 | 02.85 | 00.12 | 00.01 | 00.13 | 00.12 | 00.88 | 00.19 | 02.93 | 01.90 | 00.05 | |||||||||
MnO | 0 | 0 | 00.02 | 00.01 | 00.02 | 00.12 | 0 | 00.03 | 00.05 | 00.09 | 00.17 | 0 | |||||||||
MgO | 0 | 01.08 | 07.06 | 02.17 | 00.04 | 10.12 | 08.62 | 01.24 | 00.08 | 07.55 | 07.83 | 00.01 | |||||||||
CaO | 00.15 | 01.61 | 11.58 | 04.83 | 00.71 | 14.32 | 11.87 | 01.82 | 00.21 | 12.24 | 12.58 | 00.08 | |||||||||
Na2O | 14.46 | 14.05 | 08.04 | 13.54 | 15.33 | 07.01 | 08.66 | 13.45 | 14.59 | 07.12 | 07.25 | 15.03 | |||||||||
K2O | 00.03 | 00.01 | 0 | 00.01 | 00.02 | 00.01 | 0 | 00.01 | 00.01 | 00.01 | 0 | 00.01 | |||||||||
总量 | 99.10 | 98.78 | 99.22 | 100.60 | 100.48 | 100.59 | 99.72 | 100.01 | 99.57 | 98.92 | 98.86 | 100.67 | |||||||||
Si | 2.022 | 1.996 | 2.002 | 1.950 | 1.932 | 1.962 | 1.933 | 2.004 | 1.996 | 2.045 | 2.016 | 1.977 | |||||||||
AlⅣ | 0 | 0.004 | 0 | 0.050 | 0.068 | 0.038 | 0.067 | 0 | 0.004 | 0 | 0 | 0.023 | |||||||||
AlⅥ | 0.970 | 0.902 | 0.537 | 0.783 | 0.999 | 0.406 | 0.496 | 0.928 | 0.999 | 0.473 | 0.508 | 1.012 | |||||||||
Ti | 0.004 | 0.016 | 0.003 | 0.005 | 0 | 0.004 | 0.005 | 0.002 | 0.003 | 0.001 | 0.001 | 0.001 | |||||||||
Cr | 0.001 | 0 | 0.003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 | |||||||||
Fe3+ | 0 | 0.007 | 0.006 | 0.063 | 0.004 | 0.156 | 0.233 | 0 | 0 | 0 | 0 | 0 | |||||||||
Fe2+ | 0.011 | 0.022 | 0.085 | 0.003 | 0 | 0 | 0 | 0.025 | 0.005 | 0.088 | 0.057 | 0.001 | |||||||||
Mn | 0 | 0 | 0.001 | 0 | 0.001 | 0.004 | 0 | 0.001 | 0.001 | 0.003 | 0.005 | 0 | |||||||||
Mg | 0 | 0.055 | 0.373 | 0.111 | 0.002 | 0.535 | 0.457 | 0.063 | 0.004 | 0.399 | 0.414 | 0.001 | |||||||||
Ca | 0.005 | 0.059 | 0.440 | 0.178 | 0.026 | 0.544 | 0.453 | 0.066 | 0.008 | 0.465 | 0.478 | 0.003 | |||||||||
Na | 0.951 | 0.937 | 0.553 | 0.903 | 1.002 | 0.482 | 0.597 | 0.882 | 0.955 | 0.490 | 0.498 | 0.974 | |||||||||
K | 0.001 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
总量 | 3.965 | 3.998 | 4.003 | 4.046 | 4.035 | 4.131 | 4.241 | 3.971 | 3.975 | 3.964 | 3.978 | 3.992 | |||||||||
Jd | 99 | 92 | 55 | 77 | 98 | 39 | 49 | 92 | 99 | 50 | 51 | 100 | |||||||||
Aeg | 0 | 01 | 0 | 09 | 0 | 07 | 07 | 0 | 0 | 0 | 0 | 0 | |||||||||
Quad | 01 | 07 | 45 | 14 | 01 | 53 | 44 | 08 | 01 | 50 | 49 | 0 | |||||||||
Wo | 34 | 41 | 49 | 50 | 80 | 47 | 46 | 43 | 41 | 49 | 50 | 060 | |||||||||
En | 0 | 38 | 41 | 31 | 6 | 46 | 47 | 40 | 22 | 42 | 43 | 010 | |||||||||
Fs | 66 | 20 | 10 | 19 | 14 | 07 | 07 | 17 | 37 | 09 | 06 | 029 | |||||||||
矿物 | Jd | Jd | Omp | Jd | Jd | Omp | Omp | Jd | Jd | Omp | Omp | Jd |
图4 危地马拉蓝水料翡翠薄片显微镜与BSE照片 a.GJ-3硬玉基质呈它形近等粒的粒-柱状变晶结构;b.GJ-3中自形硬玉的形成早于它形绿辉石;c.GJ-1弯曲镶嵌显微粒-柱状变晶结构;d.GJ-1它形绿辉石充填于早期自形硬玉粒间;e.G19-8硬玉岩中的团块状钠长石;f.Mp1-1钠长石细脉截切硬玉基质;a、c、e、f为显微镜正交偏光下拍摄,b、d为BSE照片;Jd. 硬玉;Omp. 绿辉石;Ab. 钠长石;Anl. 方沸石。
Fig.4 Thin section microscopy and BSE photographs of blue water jade from Guatemala
图5 缅甸与危地马拉的硬玉和绿辉石Ca vs.Mg/(Mg+Fe) 判别图 各元素含量以apfu(atoms per formula unit,单位分子原子数)表示。
Fig.5 Discriminant maps of Ca vs.Mg/(Mg+Fe) of jadeite and omphacite constituents from Myanmar and Guatemala
图6 缅甸与危地马拉的硬玉和绿辉石Na vs.Mg/(Mg+Fe)判别图 各元素含量以apfu(atoms per formula unit,单位分子原子数)表示。
Fig.6 Discriminant maps of Na vs.Mg/(Mg+Fe) of jadeite and omphacite constituents from Myanmar and Guatemala
图7 缅甸与危地马拉的硬玉和绿辉石Na vs.Ca/(Mg+Fe) 判别图 各元素含量以apfu(atoms per formula unit,单位分子原子数)表示。
Fig.7 Discriminant maps of Na vs.Ca/(Mg+Fe) of jadeite and omphacite constituents from Myanmar and Guatemala
图8 缅甸与危地马拉的硬玉和绿辉石Mg-Fe-Al判别图 各元素含量以apfu(atoms per formula unit,单位分子原子数)表示。
Fig.8 Discriminant maps of Mg-Fe-Al of jadeite and omphacite constituents from Myanmar and Guatemala
[1] | 国家珠宝玉石质量监督检验中心. 珠宝玉石鉴定: GB/T 16553—2017[S]. 北京: 中国标准出版社, 2017: 50-51. |
[2] |
SHI G H, HARLOW G E, WANG J, et al. Mineralogy of jadeitite and related rocks from Myanmar: a review with new data[J]. European Journal of Mineralogy, 2012, 24(2):345-370.
DOI URL |
[3] |
SHI G H, STÖCKHERT B, CUI W Y. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area[J]. Mineralogical Magazine, 2005, 69(6):1059-1075.
DOI URL |
[4] |
SHI G H, WANG X, CHU B B, et al. Jadeite jade from Myanmar: its texture and gemmological implications[J]. Journal of Gemmology, 2009, 31(5/6/7/8):185-195.
DOI URL |
[5] | SHI G H, STÖCKHERT B, CUI W Y. Texture and composition of kosmochlor and chromian jadeite aggregates from Myanmar: Implications for the formation of green jadeite[J]. Gems & Gemo-logy, 2006, 42(3):150-151. |
[6] | CHHIBBER H L. The Mineral Resources of Burma[M]. London: Macmillan, 1934: 1-309. |
[7] |
JOHNSON C A, HARLOW G E. Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone[J]. Geology, 1999, 27(7):629-632.
DOI URL |
[8] |
HARLOW G E. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala[J]. Journal of Metamorphic Geology, 1994, 12(1):49-68.
DOI URL |
[9] | HARLOW G E, SISSON V B, SORENSEN S S. Jadeitite from Guatemala: new observations and distinctions among multiple occurrences[J]. Geologica Acta, 2011, 9(3/4):363-387. |
[10] | HARLOW G E, SORENSEN S S, SISSON V B, et al. Jadeite jade from Guatemala: Distinctions among multiple deposits[J]. Gems & Gemology, 2006, 34(3):146-147. |
[11] |
FOSHAG W F, LESLIE R. Jadeite from Manzanal, Guatemala[J]. American Antiquity, 1955, 21(1):81-83.
DOI URL |
[12] | MCBIRNEY A, AOKI K-I, BASS M N. Eclogites and jadeite from the Motagua fault zone, Guatemala[J]. American Minera-logist, 1967, 52(5/6):908-918. |
[13] | ABDURIYIM A, SARUWATARI K, KATSURADA Y. Japanese jadeite: History, characteristics, and comparison with other sources[J]. Gems & Gemology, 2017, 53(1):48-67. |
[14] |
TSUJIMORI T. Early Paleozoic jadeitites in Japan: An overview[J]. Journal of Mineralogical and Petrological Sciences, 2017, 112(5):217-226.
DOI URL |
[15] |
TSUJIMORI T, HARLOW G E. Jadeitite (jadeite jade) from Japan: History, characteristics, and perspectives[J]. Journal of Mineralogical and Petrological Sciences, 2017, 112(5):184-196.
DOI URL |
[16] | IWAO S. Albitite and associated jadeite rock from Kotaki District, Japan: A study in ceramic raw material[R]. Tokyo: Geological Survey of Japan, 1953(153):1-26. |
[17] | CHIHARA K. Mineralogy and paragenesis of jadeites from the Omi-Kotaki area, Central Japan[J]. Mineralogical Society of Japan, Special Paper, 1971(1):147-156. |
[18] |
COLEMAN R G. Jadeite deposits of the Clear Creek area, New Idria district, San Benito County, California[J]. Journal of Petrology, 1961, 2(2):209-247.
DOI URL |
[19] |
RADVANEC M, BANNO S, ERNST W. Chemical microstructure of Franciscan jadeite from Pacheco Pass, California[J]. American Mineralogist, 1998, 83(3/4):273-279.
DOI URL |
[20] | KRZEMNICKI M, FRANZ L, CHRISTIAN K, et al. Kosmochlor-bearing jadeite rocks from Kenterlau-Itmurundy (Lake Balkhash, Kazakhstan)[C] // IGC. Proceedings of the 35th Internationl Gemmological Conference. Windhoek: IGC Organizing Committee, 2017: 154-155. |
[21] |
DOBRETSOV N L, PONOMAREVA L G. Comparative characte-ristics of jadeite and associated rocks from Polar Ural and Prebalkhash region[J]. International Geology Review, 1968, 10(3):247-279.
DOI URL |
[22] | 孟繁聪, МАКЕЕВ А Б, 杨经绥, 等. 俄罗斯极地乌拉尔Сыум-Кеу超基性岩体中的硬玉岩[J]. 岩石学报, 2007, 23(11):2766-2774. |
[23] |
MENG F C, YANG H J, MAKEYEV A B, et al. Jadeitite in the Syum-Keu ultramafic complex from Polar Urals, Russia: insights into fluid activity in subduction zones[J]. European Journal of Mineralogy, 2016, 28(6):1079-1097.
DOI URL |
[24] | MORKOVKINO V F. Jadeitites in the hyperbasites of the Polar Urals[J]. Izvestia Akademia Nauk SSSR, Izvestia, Seria Geologicheskaya, 1960, 4:78-82. |
[25] |
SHI G H, CUI W Y, CAO S M, et al. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite[J]. Journal of the Geological Society, 2008, 165(1):221-234.
DOI URL |
[26] |
YUI T F, FUKUYAMA M, IIZUKA Y, et al. Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon[J]. Lithos, 2013, 160/161(1):268-282.
DOI URL |
[27] | QI M, XIANG H, ZHONG Z Q, et al. 40Ar/ 39Ar geochronology constraints on the formation age of Myanmar jadeitite[J]. LithosM, 2013, 162/163:107-114. |
[28] |
SHI G H, JIANG N, LIU Y, et al. Zircon Hf isotope signature of the depleted mantle in the Myanmar jadeitite: Implications for Mesozoic intra-oceanic subduction between the Eastern Indian Plate and the Burmese Platelet[J]. Lithos, 2009, 112(3/4):342-350.
DOI URL |
[29] | NYUNT T T, MASSONNE H J, SUN T T. Jadeitite and other high-pressure metamorphic rocks from the Jade Mines Belt, Tawmaw area, Kachin State, northern Myanmar[M]// BARBER A J,ZAW K,CROW M J.Myanmar:Geology,Resources and Tectonics.London:The Geological Society of London, 2017, 48(1):295-315. |
[30] |
SHI G H, CUI W Y, TROPPER P, et al. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma[J]. Contributions to Mineralogy and Petrology, 2003, 145(3):355-376.
DOI URL |
[31] |
SHI G H, ZHU X K, DENG J, et al. Spherules with pure iron cores from Myanmar jadeitite: Type-I deep-sea spherules?[J]. Geochimica et Cosmochimica Acta, 2011, 75(6):1608-1620.
DOI URL |
[32] | SHI G H, JIANG N, WANG Y W, et al. Ba minerals in clinopyroxene rocks from the Myanmar jadeitite area: implications for Ba recycling in subduction zones[J]. European Journal of Minera-logy, 2010, 22(2):199-214. |
[33] |
QIU Z L, WU F Y, YANG S F, et al. Age and genesis of the Myanmar jadeite: Constraints from U-Pb ages and Hf isotopes of zircon inclusions[J]. Chinese Science Bulletin, 2009, 54(4):658-668.
DOI URL |
[34] |
HARLOW G E, HEMMING S R, AVÉ LALLEMANT H G, et al. Two high-pressure-low-temperature serpentinite-matrix mélangebelts, Motagua fault zone, Guatemala: A record of Aptian and Maastrichtian collisions[J]. Geology, 2004, 32(1):17-20.
DOI URL |
[35] | DENGO G. Mid America: Tectonic setting for the Pacific margin from southern Mexico to northwestern Colombia[M] //NAIRN A E M, STEHLI F G, UYEDA S. The Ocean Basin and Margins. Vol.7A. New York: Plenum Press, 1985:123-180. |
[36] | DONNELLY T W, HORNE G S, FINCH R C, et al. Northern Central America; the Maya and Chortis Blocks[M]// DENGO G, CASE J E. The Geology of North America, Vol. H. The Cari-bbean Region. Boulder: Geological Society of America, 1990:37-76. |
[37] |
BRUECKNER H K, AVÉ LALLEMANT H G, SISSON V B, et al. Metamorphic reworking of a high pressure-low temperature mélange along the Motagua fault, Guatemala: A record of Neocomian and Maastrichtian transpressional tectonics[J]. Earth and Planetary Science Letters, 2009, 284(1/2):228-235.
DOI URL |
[38] |
PÁRRAGA J, GARCÍA-CASCO A, PROENZA J, et al. Trace-element geochemistry of transform-fault serpentinite in high-pre-ssure subduction mélanges (eastern Cuba): implications for subduction initiation[J]. International Geology Review, 2017, 59(3):1-24.
DOI URL |
[39] |
PERFIT M R, HEEZEN B C. The geology and evolution of the Cayman Trench[J]. Geological Society of America Bulletin, 1978, 89(8):1155-1174.
DOI URL |
[40] |
TORRES-DE LEON R, SOLARI L A, ORTEGA-GUTIERREZ F, et al. The Chortís Block—southwestern México connections: U-Pb zircon geochronology constraints[J]. American Journal of Science, 2012, 312(3):288-313.
DOI URL |
[41] |
ROSENCRANTZ E, ROSS M I, SCLATER J G. Age and spreading history of the Cayman Trough as determined from depth, heat-flow, and magnetic-anomalies[J]. Journal of Geophysical Research:Solid Earth and Planets, 1988, 93(B3):2141-2157.
DOI URL |
[42] |
HARLOW G E, FLORES K E, MARSCHALL H R. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone[J]. Lithos, 2016, 258/259:15-36.
DOI URL |
[43] | TSUJIMORI T, LIOU J G, COLEMAN R G. Comparison of two contrasting eclogites from the Motagua fault zone, Guatemala: Southern lawsonite eclogite versus northern zoisite eclogite[C] // GSA. Geological Society of America Abstracts with Programs. Denver: GSA Committee, 2004, 36(5):136. |
[44] | HARLOW G E, SISSON V B, TSUJIMORI T, et al. P-T conditions of eclogite/garnet-amphibolite from serpentinite mélanges along the Motagua fault zone, Guatemala[C] // GSA. Geologi-cal Society of America Abstracts with Programs. Houston: GSA Committee, 2008, 40(6):452. |
[45] | TSUJIMORI T, SISSON V B, LIOU J G, et al. Petrologic chara-cterization of Guatemalan lawsonite eclogite: Eclogitization of subducted oceanic crust in a cold subduction zone[J]. Geological Society of America, Special Paper, 2006, 403:147-168. |
[46] |
TSUJIMORI T, SISSON V B, LIOU J G, et al. Very-low-tempe-rature record of the subduction process: A review of worldwide lawsonite eclogites[J]. Lithos, 2006, 92(3/4):609-624.
DOI URL |
[47] | HARLOW G E, SISSON V B, AVÉ LALLEMANT H G, et al. High-pressure, metasomatic rocks along the Motagua fault zone, Guatemala[J]. Ofioliti, 2003, 28(2):115-120. |
[48] | BURKART B. Northern Central America[M] // DONOVAN S K, JACKSON T A. Caribbean Geology: An Introduction. Kingston: University of West Indies Publishers' Association, 1994: 265-284. |
[49] |
FLORES K E, MARTENS U C, HARLOW G E, et al. Jadeitite formed during subduction: In situ zircon geochronology constraints from two different tectonic events within the Guatemala Suture Zone[J]. Earth and Planetary Science Letters, 2013, 371/372:67-81.
DOI URL |
[50] |
YUI T F, MAKI K, USUKI T, et al. Genesis of Guatemala jadeitite and related fluid characteristics: Insight from zircon[J]. Chemical Geology, 2010, 270:45-55.
DOI URL |
[51] |
BERTRAND G, RANGIN C, MALUSKI H, et al. Cenozoic meta-morphism along the Shan scarp (Myanmar): evidences for ductile shear along the Sagaing fault or the northward migration of the eastern Himalayan syntaxis?[J]. Geophysical Research Letters, 1999, 26(7):915-918.
DOI URL |
[52] |
BERTRAND G, RANGIN C. Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India-Indochina oblique convergence since the Oligocene[J]. Journal of Asian Earth Sciences, 2003, 21(10):1139-1157.
DOI URL |
[53] |
MITCHELL A H G, AUSA C A, DEIPARINE L, et al. The Modi Taung-Nankwe gold district, Slate belt, central Myanmar: mesothermal veins in a Mesozoic orogen[J]. Journal of Asian Earth Sciences, 2004, 23(3):321-341.
DOI URL |
[54] | BENDER F, BANNERT D. Geology of Burma[M]. Berlin: Gebrüder Bornträeger, 1983: 260-293. |
[55] | 施光海, 崔文元, 刘晶, 等. 缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究[J]. 岩石学报, 2001, 17(3):483-490. |
[56] | 刘川子. 缅甸翡翠赌石毛料的真假皮壳类型及鉴别探讨[D]. 桂林: 桂林理工大学, 2018: 10-53. |
[57] | 郑亭. 危地马拉绿色系列翡翠的宝石矿物学特征研究[D]. 北京:中国地质大学(北京), 2015: 12-13, 25-41. |
[58] | 陈宇涵. 危地马拉蓝水料翡翠宝石矿物学特征研究[D]. 桂林: 桂林理工大学, 2019: 3-7, 15-19. |
[59] | 杨昕. 危地马拉蓝绿色翡翠“皮”和“肉”的宝石矿物学研究[D]. 北京: 中国地质大学(北京), 2019: 15-19, 26-31. |
[60] | 吴以诺. 缅甸与危地马拉硬玉岩及相关岩石中微量元素特征、对比及意义[D]. 北京: 中国地质大学(北京), 2015: 33-36. |
[61] | 林晨露. 危地马拉不同色调绿色翡翠宝石矿物学特征研究[D]. 北京: 中国地质大学(北京), 2020: 10-12, 24-31. |
[62] | 王铎, 龙楚, 谭钊勤. 危地马拉灰绿色翡翠[J]. 宝石和宝石学杂志, 2009, 11(2): 4, 20-23, 29. |
[63] | 胡楚雁. 缅甸翡翠阶地矿床地质演化特征分析[J]. 珠宝科技, 2004, 16(2):59-61. |
[64] | 摩汰. 缅甸帕敢硬玉矿床[J]. 宝石和宝石学杂志, 2002, 4(3):5-7, 56. |
[65] | 施光海, 王夏, 储彬彬, 等. 缅甸以硬玉为主翡翠的结构与宝石学意义[C] // NGTC. 中国珠宝首饰学术交流会论文集. 北京: 国家珠宝玉石质量监督检验中心, 2009: 121-124. |
[66] | 施加辛. 再论翡翠的概念、分类及英译名[J]. 珠宝科技, 2001, 13(4):4-7. |
[67] | 施光海, 雷玮琰. 世界上翡翠的产地及特色[J]. 紫禁城, 2018(5):42-53. |
[68] | 安梅. 翡色翡翠的宝石矿物学特征及热处理研究[D]. 昆明: 昆明理工大学, 2013: 2-12. |
[69] | 邹天人, 郭立鹤, 於晓晋. 中国主要玉石类型及产地[J]. 矿床地质, 1996, 15(增刊):79-92. |
[70] | 胡楚雁, 陈钟惠. 缅甸翡翠阶地矿床表生还原性水岩反应的宝石学意义[J]. 宝石和宝石学杂志, 2002, 4(2):1-6. |
[71] | 王礼胜, 刘洋, 吴晓, 等. 翡翠的灰绿色—绿黑色次生变化产物初步研究[M] //国土资源部珠宝玉石首饰管理中心. 珠宝与科技——中国珠宝首饰学术交流会论文集(2011). 北京: 地质出版社, 2011: 9,221-229. |
[72] | 闫薇薇, 王建华. 缅甸翡翠砾石中蓝雾和黑皮的成因探讨[J]. 中山大学学报(自然科学版), 2011, 50(6):107-113. |
[73] | 严若谷, 丘志力, 冯敏, 等. 天然缅甸硬玉岩低温变质水岩反应作用: 显微红外光谱的证据[J]. 光谱学与光谱分析, 2014, 34(9):2397-2401. |
[74] | 刘子燕. 翡翠矿床类型、成因及翡翠皮壳特征分析[J]. 四川有色金属, 2016(4):10-13. |
[75] | CARROLL D. Rock Weathering[M]. New York, London: Plenum Press, 1970: 7-16. |
[76] | 陈利友, 李珑. 浅析风化带的定义及划分[J]. 四川水利, 2011, 32(4):56-59. |
[77] | JENNY H. Factors of Soil Formation: A System of Quantitative Pedology[M]. New York: McGraw-Hill, 1941: 1-281. |
[78] | TAYLOR J A. Jade, minerals and Guatemala[J]. Rocks & Minerals, 1954, 29(7/8):362-366. |
[79] | MÜLLER M J. Selected climatic data for a global set of standard stations for vegetation science[M] //LIETH H. Tasks for Vegetation Science 5. Hague: Dr W. Junk Publishers, 1982: 113-115, 189. |
[80] |
LATT Z Z, WITTENBERG H. Hydrology and flood probability of the monsoon-dominated Chindwin River in northern Myanmar[J]. Journal of Water and Climate Change, 2015, 6(1):144-160.
DOI URL |
[81] |
BRAKENRIDGE G R, SYVITSKI J P M, NIEBUHR E, et al. Design with nature: Causation and avoidance of catastrophic flooding, Myanmar[J]. Earth-Science Reviews, 2017, 165:81-109.
DOI URL |
[82] | 翁笃鸣. 山地气候文集[M]. 北京: 气象出版社, 1984: 1-197. |
[83] | BACHE B W, CHESWORTH W, CHESWORTH W. Biomes and their soils[M] // CHESWORTH W. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, 2008: 61-68. |
[84] |
LEIMGRUBER P, KELLY D S, STEININGER M K, et al. Forest cover change patterns in Myanmar (Burma) 1990-2000[J]. Environmental Conservation, 2005, 32(4):356-364.
DOI URL |
[85] | 谢佳君, 罗跃双, 侯舜禹, 等. 翡翠烧红实验温度探究[J]. 超硬材料工程, 2011, 23(2):51-56. |
[86] | 余平. 翡翠颜色的研究及其评价[J]. 矿产与地质, 1996, 10(1):44-49. |
[87] | 袁奎荣, 陈志强, 袁雁. 翡翠赌石的地质预测[J]. 云南地质, 1998, 17(3/4):300-309. |
[88] | 都灵. 红—黄色翡翠的热处理实验及颜色成因研究[D]. 北京: 中国地质大学(北京), 2013: 1-89. |
[89] | 奥岩, 陈进. 缅甸各种颜色翡翠化学成份特征[J]. 珠宝科技, 1997(4):37-40. |
[90] | 闫薇薇, 王建华. 缅甸翡翠加热处理的特征研究[J]. 宝石和宝石学杂志, 2012, 14(1):1-6. |
[91] | 冯祎菲. 翡翠黄—红褐色次生变化特征研究[D]. 石家庄: 石家庄经济学院, 2014: 1-52. |
[92] | FISCHER G, NACHTERGAELE F O, PRIELER S, et al. Global Agro-ecological Zones (GAEZ v3.0)[M]. Laxenburg:IIASA, Rome:FAO, 2012: 1-179. |
[93] | 周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013: 1-902. |
[94] | HARGETT D. Jadeite of Guatemala: A contemporary view[J]. Gems & Gemology, 1990, 26(2):134-141. |
[95] |
WANG X, SHI G H, QIU D F, et al. Grossular-bearing jadeite omphacite rock in the Myanmar jadeite area: a kind of jadeitized rodingite?[J]. European Journal of Mineralogy, 2012, 24(2):237-246.
DOI URL |
[96] | 王静, 施光海, 王君, 等. 缅甸硬玉岩地区的热液型钠长石岩[J]. 岩石学报, 2013, 29(4):1450-1460. |
[97] |
FRANZ L, SUN T T, HÄNNI H A, et al. A comparative study of jadeite, omphacite and kosmochlor jades from Myanmar, and suggestions for a practical nomenclature[J]. Journal of Gemmology, 2014, 34(3):210-229.
DOI URL |
[98] |
LIN C L, HE X M, LU Z Y, et al. Phase composition and genesis of pyroxenic jadeite from Guatemala: insights from cathodoluminescence[J]. RSC Advances, 2020, 10(27):15937-15946.
DOI URL |
[99] | 奥岩. 翡翠的结构、矿物成分与其物理性质的关系[J]. 珠宝科技, 1998(2):43-45. |
[100] | 蔡诗诗, 张恩. 缅甸翡翠原石中角闪石族矿物的形成[J]. 矿物学报, 2018, 38(1):50-57. |
[101] | 陈晶晶. 危地马拉中部麦塔高河谷断裂带翡翠的宝石矿物学研究[D]. 北京: 中国地质大学(北京), 2009: 15-16. |
[102] | 崔文元, 王时麒, 杨富绪, 等. 缅甸翡翠(辉石玉)的矿物学及其分类的研究[J]. 云南地质, 1998, 17(3/4):356-380. |
[103] | 戴婕, 孙传敏, 解永顺, 等. 缅甸翡翠的光谱特征及呈色机理[J]. 四川地质学报, 2007, 27(4):296-300. |
[104] | 李曦. 缅甸紫色翡翠的致色机理及影响因素研究[D]. 北京: 中国地质大学(北京), 2012: 20-23. |
[105] | 欧阳秋眉. 翡翠的矿物组成[J]. 宝石和宝石学杂志, 1999, 1(1):18-25. |
[106] | 张智宇, 施光海, 欧阳秋眉, 等. 危地马拉硬玉岩与硬玉化绿辉石岩的岩石学特征及其地质意义[J]. 地质学报, 2012, 86(1):198-208. |
[107] | 薛皓予, 陈涛, 李志刚. 危地马拉与缅甸含绿辉石翡翠的矿物学对比研究[J]. 岩石矿物学杂志, 2020, 39(4):481-494. |
[108] | 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5):459-464. |
[109] | 梁贤, 张聚全, 卢静, 等. 哈萨克斯坦伊特穆伦硬玉岩的矿物学特征[J]. 矿物学报, 2020, 40(2):155-164. |
[110] | 雷蕾, 滕亚君, 刘汗青, 等. 基于分子光谱的翡翠不同产地快速鉴别研究[J]. 激光与光电子学进展, 2021: 58(12):516-521. |
[111] |
SORENSEN S, HARLOW G E, RUMBLE D III. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence[J]. American Mineralogist, 2006, 91(7):979-996.
DOI URL |
[1] | 徐海军,金淑燕*,郑伯让. 岩石组构学研究的最新技术——电子背散射衍射(EBSD)[J]. 现代地质, 2007, 21(2): 213-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||