现代地质 ›› 2020, Vol. 34 ›› Issue (04): 812-820.DOI: 10.19657/j.geoscience.1000-8527.2020.04.16
晏继发1,2(), 马安来3(
), 李贤庆1,2, 从刚石1,2, 和钰凯1,2, 张亚超1,2
收稿日期:
2019-06-30
修回日期:
2019-09-17
出版日期:
2020-08-31
发布日期:
2020-09-03
通讯作者:
马安来
作者简介:
马安来,男,副教授,博士,1969年出生,有机地球化学专业,主要从事油气地球化学与成藏机理研究。Email: maal.syky@sinopec.com。基金资助:
YAN Jifa1,2(), MA Anlai3(
), LI Xianqing1,2, CONG Gangshi1,2, HE Yukai1,2, ZHANG Yachao1,2
Received:
2019-06-30
Revised:
2019-09-17
Online:
2020-08-31
Published:
2020-09-03
Contact:
MA Anlai
摘要:
近年来我国油气勘探向深层拓展,油气成熟度及油藏保存成为研究焦点。金刚烷化合物由于其独特的笼型分子结构,具有较强的热稳定性和抗生物降解能力,在深层油气勘探具有广阔的应用前景。叙述了实验室检测金刚烷化合物的样品预处理及检测方法;总结了金刚烷化合物在地质体中的成因和演化过程;综述了金刚烷化合物在判识成熟度、原油裂解程度、生物降解作用、硫酸盐热化学还原作用和蒸发分馏作用等方面的研究进展。由于金刚烷化合物成因不明,制约了其在油气地球化学的应用。提出开展不同沉积环境、不同类型烃源岩及原油中金刚烷化合物演化过程的对比研究,研究不同沉积盆地原油的甲基双金刚烷基线,有利于补充和完善金刚烷化合物的实际应用,对了解深部油气成藏过程、指导深部油气勘探具有重要意义。
中图分类号:
晏继发, 马安来, 李贤庆, 从刚石, 和钰凯, 张亚超. 金刚烷化合物在深层油气地球化学研究中的应用[J]. 现代地质, 2020, 34(04): 812-820.
YAN Jifa, MA Anlai, LI Xianqing, CONG Gangshi, HE Yukai, ZHANG Yachao. Application of Diamondoids in Geochemical Research of Deep Oil and Gas[J]. Geoscience, 2020, 34(04): 812-820.
学者 | 时间 | 样品 | 主要认识 |
---|---|---|---|
Fang等[ | 2012 | 原油 | 金刚烷在Easy Ro=1.0%~2.1%时生成,Easy Ro>2.1%时开始分解 |
Fang等[ | 2013 | 原油 | 单金刚烷在Easy Ro=1.0%~2.3%时生成,Easy Ro>2.3%时开始分解;双金刚烷在Easy Ro=1.6%~2.7%时生成,Easy Ro>2.7%时开始分解 |
Fang等[ | 2015 | 海相页岩 | 金刚烷在Easy Ro=0.8%~1.7%时生成,Easy Ro>1.7%时开始分解直至Easy Ro=3.0%时基本完全消失 |
房忱琛等[ | 2015 | 煤系泥岩 | 金刚烷在Easy Ro=1.0%~1.5%时生成,Easy Ro>1.5%时开始分解 |
Li等[ | 2015 | 干酪根 | 单金刚烷在Easy Ro=0.8%~1.8%时生成,Easy Ro>1.8%时开始分解;双金刚烷在Easy Ro=1.0%~2.2%时生成,Easy Ro>2.2%时开始分解 |
Jiang等[ | 2018 | 干酪根 | 金刚烷在Easy Ro=0.6%~2.1%时生成,Easy Ro>2.1%时开始分解 |
表1 金刚烷化合物在原油和烃源岩中的演化
Table 1 Evolution of diamondoids in crude oil and source rocks
学者 | 时间 | 样品 | 主要认识 |
---|---|---|---|
Fang等[ | 2012 | 原油 | 金刚烷在Easy Ro=1.0%~2.1%时生成,Easy Ro>2.1%时开始分解 |
Fang等[ | 2013 | 原油 | 单金刚烷在Easy Ro=1.0%~2.3%时生成,Easy Ro>2.3%时开始分解;双金刚烷在Easy Ro=1.6%~2.7%时生成,Easy Ro>2.7%时开始分解 |
Fang等[ | 2015 | 海相页岩 | 金刚烷在Easy Ro=0.8%~1.7%时生成,Easy Ro>1.7%时开始分解直至Easy Ro=3.0%时基本完全消失 |
房忱琛等[ | 2015 | 煤系泥岩 | 金刚烷在Easy Ro=1.0%~1.5%时生成,Easy Ro>1.5%时开始分解 |
Li等[ | 2015 | 干酪根 | 单金刚烷在Easy Ro=0.8%~1.8%时生成,Easy Ro>1.8%时开始分解;双金刚烷在Easy Ro=1.0%~2.2%时生成,Easy Ro>2.2%时开始分解 |
Jiang等[ | 2018 | 干酪根 | 金刚烷在Easy Ro=0.6%~2.1%时生成,Easy Ro>2.1%时开始分解 |
缩写 | 公式 | 资料来源 | |
---|---|---|---|
同系 物指标 | MAI | 1-MA/(1-MA+2-MA) | Chen等[ |
MDI | 4-MD/(4-MD+1-MD+3-MD) | ||
DMAI-1 | 1,3-DMA/(1,3-DMA+1,2-DMA) | Wei等[ | |
DMAI-2 | 1,3-DMA/(1,3-DMA+1,4-DMA) | ||
EAI | 1-EA/(1-EA+2-EA) | Schulz等[ | |
TMAI-1 | 1,3,5-TMA/(1,3,5-TMA+1,3,4-TMA) | Wei等[ | |
TMAI-2 | 1,3,5-TMA/(1,3,5-TMA+1,3,6-TMA) | ||
DMDI-1 | 4,9-DMD/(4,9-DMD+3,4-DMD) | Chen等[ | |
DMDI-2 | 4,9-DMD/(4,9-DMD+4,8-DMD) | ||
产率 指标 | A/D | 单金刚烷/双金刚烷 | Fang等[ |
MA/MD | 甲基单金刚烷/甲基双金刚烷 | ||
DMA/DMD | 双甲基单金刚烷/双甲基双金刚烷 | ||
TMA/DMD | 三甲基单金刚烷/三甲基双金刚烷 | ||
As/Ds | 总单金刚烷/总双金刚烷 |
表2 文献中出现的金刚烷相关成熟度参数
Table 2 Maturity parameters of diamondoids in literature
缩写 | 公式 | 资料来源 | |
---|---|---|---|
同系 物指标 | MAI | 1-MA/(1-MA+2-MA) | Chen等[ |
MDI | 4-MD/(4-MD+1-MD+3-MD) | ||
DMAI-1 | 1,3-DMA/(1,3-DMA+1,2-DMA) | Wei等[ | |
DMAI-2 | 1,3-DMA/(1,3-DMA+1,4-DMA) | ||
EAI | 1-EA/(1-EA+2-EA) | Schulz等[ | |
TMAI-1 | 1,3,5-TMA/(1,3,5-TMA+1,3,4-TMA) | Wei等[ | |
TMAI-2 | 1,3,5-TMA/(1,3,5-TMA+1,3,6-TMA) | ||
DMDI-1 | 4,9-DMD/(4,9-DMD+3,4-DMD) | Chen等[ | |
DMDI-2 | 4,9-DMD/(4,9-DMD+4,8-DMD) | ||
产率 指标 | A/D | 单金刚烷/双金刚烷 | Fang等[ |
MA/MD | 甲基单金刚烷/甲基双金刚烷 | ||
DMA/DMD | 双甲基单金刚烷/双甲基双金刚烷 | ||
TMA/DMD | 三甲基单金刚烷/三甲基双金刚烷 | ||
As/Ds | 总单金刚烷/总双金刚烷 |
图4 用(4-+3-)MD和C29胆甾烷绝对含量研究原油裂解程度(据文献[21])
Fig.4 Diagram showing the use of absolute concentration of (4-+3-) MD and C29 stigmastane to identify the degree of oil-cracking (after ref. [21])
图5 墨西哥湾Smackover油中硫代金刚烷和金刚烷关系图(据文献[45]修改)
Fig.5 Correlation diagram of thiadiamondoids and diamondoids in Smackover oils from the Gulf of Mexico (modified after ref. [45])
[1] | 冯佳睿, 高志勇, 崔京钢, 等. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016,31(7):718-736. |
[2] | LANDA S, MACHACEK V. Adamantane, a new hydrocarbon extracted from petroleum[J]. Collection of Czechoslovak Chemical Communications, 1933,5(1):1-5. |
[3] | 米镇涛, 郭建维, 邱立勤. 笼状烃金刚烷的新合成方法[J]. 燃料化学学报, 1998,26(1):89-92. |
[4] | WINGERT W S. GC-MS analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992,71(1):37-43. |
[5] |
WEI Z B, MOLDOWAN J M, PAYTAN A. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis[J]. Organic Geochemistry, 2006,37:891-911.
DOI URL |
[6] |
WEI Z B, MOLDOWAN J M, JARVIE D M, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006,34(12):1013-1016.
DOI URL |
[7] |
WEI Z B, MOLDOWAN J M, ZHANG S C, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007,38, 227-249.
DOI URL |
[8] |
LI J G, PAUL P, CUI M Z. Methyl diamantane index ( MDI) as a maturity parameter for Lower Palaeozoic carbonate rocks at high maturity and overmaturity[J]. Organic Geochemistry, 2000,31(4):267-272.
DOI URL |
[9] |
GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000,31(1):67-73.
DOI URL |
[10] |
CHEN J H, FU J M, SHENG G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996,25(3/4):179-190.
DOI URL |
[11] |
SILVA R C, SILVA R S F, DE CASTRO E V R, et al. Extended diamondoid assessment in crude oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Fuel, 2013,112:125-133.
DOI URL |
[12] |
LI S F, HU S Z, CAO J, et al. Diamondoid characterization in condensate by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry: the Junggar basin of Northwest China[J]. International Journal of Molecular Sciences, 2012,13(9):11399-11410.
DOI URL PMID |
[13] |
LIANG Q Y, XIONG Y Q, FANG C C, et al. Quantitative analysis of diamondoids in crude oils using gas chromatography-triple quadrupole mass spectrometry[J]. Organic Geochemistry, 2012,43:83-91.
DOI URL |
[14] |
WANG G L, SHI S B, WANG P R, et al. Analysis of diamondoids in crude oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry[J]. Fuel, 2013,107:706-714.
DOI URL |
[15] | 马安来, 金之钧, 朱翠山, 等. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009,30(2):214-218. |
[16] |
张万峰, 童婷, 李东浩, 等. 原油中金刚烷化合物的高效分析方法[J]. 石油实验地质, 2015,37(6):796-808.
DOI URL |
[17] | 陈军红, 傅家谟, 盛国英, 等. 金刚烷化合物在石油中的分布特征研究[J]. 自然科学进展, 1997,7(3):363-367. |
[18] |
FANG C C, XIONG Y Q, LIANG Q Y, et al. Variation in abundance and distribution of diamondoids during oil cracking[J]. Organic Geochemistry, 2012,43(1):1-8.
DOI URL |
[19] |
FANG C C, XIONG Y Q, LI Y, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013,120(11):109-120.
DOI URL |
[20] | 梁前勇, 熊永强, 房忱琛, 等. 两种测定原油中金刚烷化合物方法的对比研究[J]. 地球化学, 2012,41(5):433-441. |
[21] |
DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999,399(5):54-57.
DOI URL |
[22] |
SPRINGER M V, GARCIA D F, GONCALVES F T T, et al. Diamondoid and biomarker characterization of oils from the Llanos Orientales Basin, Colombia[J]. Organic Geochemistry, 2010,41(9):1013-1018.
DOI URL |
[23] |
SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001,32(3):365-375.
DOI URL |
[24] |
李素梅, 庞雄奇, 杨海军, 等. 塔中I号坡折带高熟油气地球化学特征及其意义[J]. 石油与天然气地质, 2008,29(2):210-216.
DOI URL |
[25] |
BERWICK L, ALEXANDER R, PIERCE K. Formation and reactions of alkyl adamantanes in sediments: carbon surface reactions[J]. Organic Geochemistry, 2011,42:752-761.
DOI URL |
[26] |
GIRUTS M V, RUSINOVA G V, GORDADZE G N. Generation of adamantanes and diamantanes by thermal cracking of high-molecular-mass saturated fractions of crude oils of different genotypes[J]. Petroleum Chemistry, 2006,46(4):225-236.
DOI URL |
[27] |
GIRUTS M V, GORDADZE G N. Generation of adamantanes and diamantanes by thermal cracking of polar components of crude oils of different genotypes[J]. Petroleum Chemistry, 2007,47(1):12-22.
DOI URL |
[28] |
GORDADZE G N, GIRUTS M V. Synjournal of adamantane and diamantane hydrocarbons by high-temperature cracking of higher n-alkanes[J]. Petroleum Chemistry, 2008,48(6):414-419.
DOI URL |
[29] |
FANG C C, XIONG Y Q, LI Y, et al. Generation and evolution of diamondoids in source rock[J]. Marine and Petroleum Geology, 2015,67:197-203.
DOI URL |
[30] |
房忱琛, 吴伟, 刘丹, 等. 煤系中金刚烷化合物演化特征及应用[J]. 天然气地球科学, 2015,26(1):110-117.
DOI URL |
[31] |
LI Y, CHEN Y, XIONG Y Q, et al. Origin of adamantanes and diamantanes in marine source rock[J]. Energy Fuels, 2015,29:8188-8194.
DOI URL |
[32] |
JIANG W M, LI Y, XIONG Y Q. The effect of organic matter type on formation and evolution of diamondoids[J]. Marine and Petroleum Geology, 2018,89:714-720.
DOI URL |
[33] | 陈军红, 傅家谟, 盛国英, 等. 金刚烷化合物的结构特征及其地球化学意义[J]. 科学通报, 1996,41(6):524-527. |
[34] |
郑伦举, 曹建平, 薛建华, 等. 原油及烃源岩成熟度的新指标—甲基双金刚烷指数[J]. 石油实验地质, 1998,20(4):411-416.
DOI URL |
[35] |
ZHANG S C, HUANG H P, XIAO Z Y, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: Maturity assessment[J]. Organic Geochemistry, 2005,36:1215-1225.
DOI URL |
[36] | 郭小文, 何生, 陈红汉. 甲基双金刚烷成熟度指标讨论与应用[J]. 地质科技情报, 2007,26(1):71-76. |
[37] |
LI Y, XIONG Y Q, LIANG Q Y, et al. The application of diamondoid indices in the Tarim oils[J]. AAPG Bulletin, 2018,102(2):267-291.
DOI URL |
[38] | 张水昌, 赵文智, 王飞宇, 等. 塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J]. 天然气地球科学, 2004,15(5):441-451. |
[39] | 马安来, 金之钧, 朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017,28(2):313-323. |
[40] |
WILLIAMS J A, BJORϕY M, DOLCATER D L, et al. Biodegradation in South Texas Eocene oils—Effects on aromatics and biomarkers[J]. Organic Geochemistry, 1986,10(3/4):451-461.
DOI URL |
[41] |
WEI Z B, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007,38(11):1910-1926.
DOI URL |
[42] |
CHENG X, HOU D J, XU C G. The effect of biodegradation on adamantanes in reservoired crude oils from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2018,123:38-43.
DOI URL |
[43] | HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002,16:1750-1751. |
[44] | 姜乃煌, 朱光有, 张水昌, 等. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J]. 科学通报, 2007,52(24):2871-2875. |
[45] |
WEI Z B, WALTERS C C, MOLDOWAN J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012,44:53-70.
DOI URL |
[46] |
CAI C F, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016,182:88-108.
DOI URL |
[47] |
CAI C F, XIAO Q L, FANG C C, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016,101:49-62.
DOI URL |
[48] | 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018,39(1):313-323. |
[49] |
MOLDOWAN J M, DAHL J, ZINNIKER D, et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1: The diamondoids[J]. Journal of Petroleum Science and Engineering, 2015,126:87-96.
DOI URL |
[50] |
PETERSEN H I, CUMMING D, DUJONCQUOY E. Geochemical composition of oils in the Dunga Field, western Kazakhstan: Evidence for a lacustrine source and a complex filling history[J]. Organic Geochemistry, 2018,115:174-187.
DOI URL |
[51] | 吴楠, 蔡忠贤. 轮南低凸起原油中金刚烷化合物的相分馏响应[J]. 断块油气田, 2012,19(4):458-461. |
[52] |
CHAKHMAKHCHEV A, SANDERSON J, PEARSON C, et al. Compositional changes of diamondoid distributions caused by simulated evaporative fractionation[J]. Organic Geochemistry, 2017,113:224-228.
DOI URL |
[1] | 蒋中发, 江梦雅, 陈海龙, 刘龙松, 王学勇, 卞保力, 李娜. 准噶尔盆地玛湖凹陷下二叠统风城组烃源岩热演化及沉积古环境评价[J]. 现代地质, 2022, 36(04): 1118-1130. |
[2] | 周亚龙,孙忠军,杨志斌,张富贵,张舜尧,王惠艳. 利用土壤游离烃技术判别油气藏性质及保存条件[J]. 现代地质, 2016, 30(6): 1370-1375. |
[3] | 程青松,龚建明,张敏, 赵青芳,王伟超, 程文洁,田瑞聪,陈志强. 祁连山冻土区木里煤田侏罗系烃源岩地球化学特征[J]. 现代地质, 2016, 30(6): 1408-1416. |
[4] | 陈菊林,张敏. 原油热模拟实验中重排藿烷类变化特征及其意义[J]. 现代地质, 2016, 30(4): 871-879. |
[5] | 姜振学,李峰,李卓. 利用石油包裹体烃组分信息恢复塔中地区油气成藏过程[J]. 现代地质, 2013, 27(5): 1193-1201. |
[6] | 孙浩,张敏,李素梅. 松辽盆地南部浅层天然气地球化学特征及其成因分析[J]. 现代地质, 2013, 27(5): 1173-1179. |
[7] | 李素梅,孟祥兵,张宝收,张海祖,潘娜,史权. 傅里叶变换离子回旋共振质谱的地球化学意义及其在油气勘探中的应用前景[J]. 现代地质, 2013, 27(1): 124-132. |
[8] | 李素梅, 张宝收, 张海祖, 盛世忠, 赵明. 塔中原油超高二苯并噻吩硫特征及其控制因素[J]. 现代地质, 2011, 25(6): 1108-1120. |
[9] | 傅宁,林青,刘英丽. 从南海北部浅层气的成因看水合物潜在的气源[J]. 现代地质, 2011, 25(2): 332-339. |
[10] | 辛艳朋, 秦建中, 郑伦举, 邱楠生. 海相页岩二次生烃潜力热模拟实验研究[J]. 现代地质, 2010, 24(6): 1079-1084. |
[11] | 向廷生, 黑花丽. 原油生物降解模拟实验及其定量化评价[J]. 现代地质, 2010, 24(2): 259-267. |
[12] | 左银辉 邱楠生 李建平 郭永华 李翠翠 常健. 渤海盆地辽东湾地区古近系烃源岩成熟演化模拟[J]. 现代地质, 2009, 23(4): 746-754. |
[13] | 李素梅 姜振学 董月霞 王旭东. 渤海湾盆地南堡凹陷原油成因类型及其分布规律[J]. 现代地质, 2008, 22(5): 817-823. |
[14] | 冉启贵,程宏岗,肖中尧,叶信林,伍大茂,桑洪. 塔东地区构造热事件及其对原油裂解的影响[J]. 现代地质, 2008, 22(4): 541-548. |
[15] | 高先志,李建海,邹志文, 刘峰. 断裂对辽河西部凹陷大洼油田油气成藏和分布的控制作用[J]. 现代地质, 2008, 22(4): 613-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||