现代地质 ›› 2018, Vol. 32 ›› Issue (01): 133-144.DOI: 10.19657/j.geoscience.1000-8527.2018.01.13
收稿日期:
2016-10-14
修回日期:
2017-12-16
出版日期:
2018-02-10
发布日期:
2018-02-05
作者简介:
郭来源,男,博士,1989年出生,矿产普查与勘探专业,主要从事沉积学、非常规油气、地球化学和岩矿鉴定等方面的研究工作。Email:Guoly0117@163.com。
基金资助:
GUO Laiyuan1,2(), LIU Zhengjun3, XIE Xinong1
Received:
2016-10-14
Revised:
2017-12-16
Online:
2018-02-10
Published:
2018-02-05
摘要:
黑白相间纹层状页岩是沉积岩中非常重要且常见的一种岩石类型。采用X射线荧光岩心扫描仪对泌阳凹陷5号页岩层中纹层状页岩样品进行测试,分析结果显示湖相纹层中一些指标,如Sr、CaO、K2O、SiO2、TiO2、Fe2O3、Al2O3、Cu含量在纹层中表现出明显规律性变化,即白色纹层中Sr和CaO含量明显高于黑色纹层,而K2O、SiO2、TiO2、Fe2O3、Al2O3、Cu含量明显低于黑色纹层。硼元素以及古氧化还原和古气候指标表明纹层状页岩主要发育在半干旱-干旱的半咸化-咸化分层水体。镜下鉴定揭示,黑色条纹主要为高有机质泥质沉积物,白色条纹主要为方解石、石英以及白云石等矿物,黑白纹层的物质成分组成与陆源供给和水体咸化后自身形成的矿物密切相关。黑白纹层中元素差异变化揭示了不同矿物组成的差异,也揭示出陆相湖盆季节性韵律变化。
中图分类号:
郭来源, 刘峥君, 解习农. 南襄盆地泌阳凹陷核桃园组三段纹层状泥页岩地球化学特征及其成因解释[J]. 现代地质, 2018, 32(01): 133-144.
GUO Laiyuan, LIU Zhengjun, XIE Xinong. Geochemical Characteristics and Genetic Interpretation of Laminated Shales of the Third Member of Hetaoyuan Formation in the Biyang Depression of Nanxiang Basin[J]. Geoscience, 2018, 32(01): 133-144.
样品 | Sr | CaO | K2O | SiO2 | TiO2 | Fe2O3 | Al2O3 | Cu |
---|---|---|---|---|---|---|---|---|
BYHF-1 | (0.24 2 0~ 0.051 6)/ 0.108 7 | (12.459 3~ 4.558 9)/ 8.398 2 | (0.389 7~ 0.119 7)/ 0.257 8 | (9.823 2~ 5.486 2)/ 7.633 5 | (0.073 2~ 0.019 6)/ 0.045 7 | (1.303 6~ 0.271 7)/ 0.723 8 | (3.312 0~ 1.257 1)/ 2.467 4 | (0.002 5~ 0.001 7)/ 0.002 12 |
BYHF-2 | (0.045 5~ 0.016 1)/ 0.029 2 | (7.119 1~ 1.874 9)/ 4.104 2 | (0.560 1~ 0.188 8)/ 0.313 7 | (17.768 0~ 11.364 0)/ 14.121 1 | (0.102 2~ 0.030 8)/ 0.055 2 | (1.766 3~ 0.539 7)/ 0.930 0 | (3.794 7~ 1.251 5)/ 2.473 4 | (0.003 9~ 0.001 7)/ 0.002 4 |
BYHF-3 | (0.119 1~ 0.028 8)/ 0.045 9 | (8.459 6~ 3.582 1)/ 5.342 1 | (0.283 9~ 0.101 6)/ 0.197 4 | (16.46 4~ 10.093 0)/ 13.732 2 | (0.054 4~ 0.018 4)/ 0.036 8 | (1.159 8~ 0.509 9)/ 0.800 9 | (2.576 5~ 0.824 3)/ 1.788 9 | (0.002 9~ 0.001 4)/ 0.002 3 |
BYHF-4 | (0.120 0~ 0.001 91)/ 0.044 6 | (6.891 3~ 2.982 8)/ 4.981 4 | (0.742 7~ 0.120 0)/ 0.218 0 | (17.108 7~ 11.575 8)/ 13.991 6 | (0.103 8~ 0.021 2)/ 0.041 0 | (0.871 9~ 0.446 2)/ 0.871 9 | (4.081 9~ 0.867 0)/ 1.952 0 | (0.003 6~ 0.001 7)/ 0.002 3 |
BYHF-5 | (0.153 6~ 0.016 4)/ 0.045 5 | (16.301 9~ 1.504 6)/ 4.581 3 | (0.642 4~ 0.034 1)/ 0.405 2 | (21.602 3~ 2.679 0)/ 13.070 0 | (0.141 3~ 0.004 8)/ 0.083 8 | (3.130 0~ 0.268 1)/ 1.127 3 | (4.871 5~ 1.169 1)/ 3.296 7 | (0.003 2~ 0.001 6)/ 0.002 5 |
表1 浅色纹层对应的元素含量
Table 1 Element contents corresponding to light colored laminae
样品 | Sr | CaO | K2O | SiO2 | TiO2 | Fe2O3 | Al2O3 | Cu |
---|---|---|---|---|---|---|---|---|
BYHF-1 | (0.24 2 0~ 0.051 6)/ 0.108 7 | (12.459 3~ 4.558 9)/ 8.398 2 | (0.389 7~ 0.119 7)/ 0.257 8 | (9.823 2~ 5.486 2)/ 7.633 5 | (0.073 2~ 0.019 6)/ 0.045 7 | (1.303 6~ 0.271 7)/ 0.723 8 | (3.312 0~ 1.257 1)/ 2.467 4 | (0.002 5~ 0.001 7)/ 0.002 12 |
BYHF-2 | (0.045 5~ 0.016 1)/ 0.029 2 | (7.119 1~ 1.874 9)/ 4.104 2 | (0.560 1~ 0.188 8)/ 0.313 7 | (17.768 0~ 11.364 0)/ 14.121 1 | (0.102 2~ 0.030 8)/ 0.055 2 | (1.766 3~ 0.539 7)/ 0.930 0 | (3.794 7~ 1.251 5)/ 2.473 4 | (0.003 9~ 0.001 7)/ 0.002 4 |
BYHF-3 | (0.119 1~ 0.028 8)/ 0.045 9 | (8.459 6~ 3.582 1)/ 5.342 1 | (0.283 9~ 0.101 6)/ 0.197 4 | (16.46 4~ 10.093 0)/ 13.732 2 | (0.054 4~ 0.018 4)/ 0.036 8 | (1.159 8~ 0.509 9)/ 0.800 9 | (2.576 5~ 0.824 3)/ 1.788 9 | (0.002 9~ 0.001 4)/ 0.002 3 |
BYHF-4 | (0.120 0~ 0.001 91)/ 0.044 6 | (6.891 3~ 2.982 8)/ 4.981 4 | (0.742 7~ 0.120 0)/ 0.218 0 | (17.108 7~ 11.575 8)/ 13.991 6 | (0.103 8~ 0.021 2)/ 0.041 0 | (0.871 9~ 0.446 2)/ 0.871 9 | (4.081 9~ 0.867 0)/ 1.952 0 | (0.003 6~ 0.001 7)/ 0.002 3 |
BYHF-5 | (0.153 6~ 0.016 4)/ 0.045 5 | (16.301 9~ 1.504 6)/ 4.581 3 | (0.642 4~ 0.034 1)/ 0.405 2 | (21.602 3~ 2.679 0)/ 13.070 0 | (0.141 3~ 0.004 8)/ 0.083 8 | (3.130 0~ 0.268 1)/ 1.127 3 | (4.871 5~ 1.169 1)/ 3.296 7 | (0.003 2~ 0.001 6)/ 0.002 5 |
样品 | Sr | CaO | K2O | SiO2 | TiO2 | Fe2O3 | Al2O3 | Cu |
---|---|---|---|---|---|---|---|---|
BYHF-1 | (0.341 0~ 0.02)/ 0.054 4 | (12.634 7~ 0.102 5)/ 2.736 2 | (0.697 9~ 0.124 0)/ 0.501 0 | (16.480 6~ 5.449 2) /11.978 8 | (0.146 6~ 0.021 4) /0.103 6 | (2.203 0~ 0.266 6) /1.144 5 | (6.166 1~ 1.303 4) /4.037 1 | (0.003 0~ 0.001 7) /0.002 4 |
BYHF-2 | (0.036 9~ 0.017 6)/ 0.026 4 | (6.491 0~ 1.729 3)/ 3.390 8 | (0.569 3~ 0.194 6)/ 0.332 9 | (17.770 3~ 11.636 3)/ 14.777 2 | (0.133 2~ 0.035 5)/ 0.056 4 | (2.368 6~ 0.548 2)/ 0.998 3 | (4.45 8~ 0.680 2)/ 2.968 9 | (0.004 8~ 0.001 7)/ 0.002 6 |
BYHF-3 | (0.056 7~ 0.030 6)/ 0.040 6 | (7.374 0~ 2.835 0)/ 4.463 5 | (0.301 2~ 0.115 8)/ 0.222 4 | (16.826 1~ 10.585 7)/ 14.248 1 | (0.067 5~ 0.019 1)/ 0.043 2 | (1.310 6~ 0.572 6)/ 0.948 1 | (2.644 6~ 1.020 7)/ 1.885 3 | (0.003 0~ 0.001 7)/ 0.002 4 |
BYHF-4 | (0.056 4~ 0.017 3)/ 0.037 5 | (6.410 3~ 1.887 9)/ 4.147 8 | (0.753 6~ 0.151 1)/ 0.249 4 | (17.760 4~ 12.554 3)/ 14.668 8 | (0.109 4~ 0.025 4)/ 0.048 8 | (1.626 7~ 0.617 1)/ 0.967 6 | (4.422 8~ 1.097 4)/ 2.119 7 | (0.003 8~ 0.001 7)/ 0.002 6 |
BYHF-5 | (0.073 1~ 0.016 3)/ 0.028 7 | (6.989 8~ 1.338 8)/ 2.762 1 | (0.671 6~ 0.263 4)/ 0.477 6 | (18.194 6~ 10.560 0)/ 14.047 8 | (0.151 8~ 0.037 9)/ 0.092 1 | (3.584 8~ 0.721 7)/ 1.437 1 | (4.954 5~ 2.272 3)/ 3.446 6 | (0.003 3~ 0.002 1/ 0.002 9 |
表2 深色纹层对应的元素含量
Table 2 Element contents corresponding to dark colored laminae
样品 | Sr | CaO | K2O | SiO2 | TiO2 | Fe2O3 | Al2O3 | Cu |
---|---|---|---|---|---|---|---|---|
BYHF-1 | (0.341 0~ 0.02)/ 0.054 4 | (12.634 7~ 0.102 5)/ 2.736 2 | (0.697 9~ 0.124 0)/ 0.501 0 | (16.480 6~ 5.449 2) /11.978 8 | (0.146 6~ 0.021 4) /0.103 6 | (2.203 0~ 0.266 6) /1.144 5 | (6.166 1~ 1.303 4) /4.037 1 | (0.003 0~ 0.001 7) /0.002 4 |
BYHF-2 | (0.036 9~ 0.017 6)/ 0.026 4 | (6.491 0~ 1.729 3)/ 3.390 8 | (0.569 3~ 0.194 6)/ 0.332 9 | (17.770 3~ 11.636 3)/ 14.777 2 | (0.133 2~ 0.035 5)/ 0.056 4 | (2.368 6~ 0.548 2)/ 0.998 3 | (4.45 8~ 0.680 2)/ 2.968 9 | (0.004 8~ 0.001 7)/ 0.002 6 |
BYHF-3 | (0.056 7~ 0.030 6)/ 0.040 6 | (7.374 0~ 2.835 0)/ 4.463 5 | (0.301 2~ 0.115 8)/ 0.222 4 | (16.826 1~ 10.585 7)/ 14.248 1 | (0.067 5~ 0.019 1)/ 0.043 2 | (1.310 6~ 0.572 6)/ 0.948 1 | (2.644 6~ 1.020 7)/ 1.885 3 | (0.003 0~ 0.001 7)/ 0.002 4 |
BYHF-4 | (0.056 4~ 0.017 3)/ 0.037 5 | (6.410 3~ 1.887 9)/ 4.147 8 | (0.753 6~ 0.151 1)/ 0.249 4 | (17.760 4~ 12.554 3)/ 14.668 8 | (0.109 4~ 0.025 4)/ 0.048 8 | (1.626 7~ 0.617 1)/ 0.967 6 | (4.422 8~ 1.097 4)/ 2.119 7 | (0.003 8~ 0.001 7)/ 0.002 6 |
BYHF-5 | (0.073 1~ 0.016 3)/ 0.028 7 | (6.989 8~ 1.338 8)/ 2.762 1 | (0.671 6~ 0.263 4)/ 0.477 6 | (18.194 6~ 10.560 0)/ 14.047 8 | (0.151 8~ 0.037 9)/ 0.092 1 | (3.584 8~ 0.721 7)/ 1.437 1 | (4.954 5~ 2.272 3)/ 3.446 6 | (0.003 3~ 0.002 1/ 0.002 9 |
图8 取样点位置以及古盐度、古氧化还原指标和古气候指标垂向变化
Fig.8 Sampling point locations and the vertical variation of paleosalinity proxies, paleoredox proxies and paleoclimate proxies
图10 泌阳凹陷5号页岩层中纹层状页岩镜下特征((a)2 433.7 m; (b)2 440.7 m)
Fig.10 The microscopic characteristics of laminated shales in the fifth shale layer of the Biyang depression ((a) 2,433.7 m; (b) 2,440.7 m)
[1] |
O'SULLIVAN P E. Annually-laminated lake sediments and the study of Quaternary environmental changes — a review[J]. Quaternary Science Reviews, 1983, 1(4): 245-313.
DOI URL |
[2] |
ANDERSON R Y, DEAN W E. Lacustrine varve formation through time[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1988, 62(1): 215-235.
DOI URL |
[3] |
OJALA A E K, TILJANDER M. Testing the fidelity of sediment chronology: comparison of varve and paleomagnetic results from Holocene lake sediments from central Finland[J]. Quaternary Science Reviews, 2003, 22: 1787-1803.
DOI URL |
[4] | BRAUER A. Annually laminated Lake Sediments and Their Palaeoclimatic Relevance[M]. Heidelberg: Springer, 2004: 109-127. |
[5] |
ULRICH V R, MICHAEL S, KLAUS H M, et al. A 5000-yr record of climate change in varved sediments from the oxygen minimum zone of Pakistan, north eastern Arabian Sea[J]. Quaternary Research, 1999, 51: 39-53.
DOI URL |
[6] |
LÜCKGE A, DOOSE-ROLINSKI H, KHAN A A, et al. Monsoonal variability in the northeastern Arabian Sea during the past 5000 years: geochemical evidence from laminated sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(3): 273-286.
DOI URL |
[7] |
VONRAD U, KHAN A A, BERGER W H, et al. Varves, turbidites and cycles in Upper Holocene sediments (Makran slope, northern Arabian Sea)[J]. Special Publications of Geological Society of London, 2002, 195(1): 387-406.
DOI URL |
[8] |
ANDERSON R Y, DEAN W E. Lacustrine varve formation through time[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 1988, 62(1): 215-235.
DOI URL |
[9] |
PAINTER S C, POULTON A J, ALLEN J T, et al. The COPAS’08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom[J]. Continental Shelf Research, 2010, 30: 1907 -1923.
DOI URL |
[10] | GRIMM K A, LANGE C B, GILL A S. Biological forcing of hemipelagic sedimentary laminae: evidence from ODP Site 893, Santa Barbara Basin, California[J]. Journal of Sedimentary Research, 1996, 66(3):613-624. |
[11] | ACKLESON S, BALCH W M, HOLLIGAN P M. White waters of the Gulf of Maine[J]. Oceanography, 1988, 1(2): 18-22. |
[12] | HAKANSON L, JANSSON M. 湖泊沉积学原理[M]. 郑光膺,译. 北京: 科学出版社, 1992:4-22. |
[13] | 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州. 甘肃科学技术出版社, 1993:20-120. |
[14] | 高波, 程克明, 樊太亮, 等. 酒西拗陷下白垩统藻纹层发育环境及形成机制[J]. 西南石油大学学报, 2007, 29(4): 44-48. |
[15] | 曹建廷, 王苏民, 沈吉, 等. 近千年来内蒙古岱海气候环境演变的湖泊沉积[J]. 地理科学, 2000, 20(5): 391-396. |
[16] | 王随继, 黄杏珍, 妥进才, 等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报, 1997, 15(1): 65-70. |
[17] | 胡受权. 古气候变迁对泌阳断陷湖盆陆相层序发育的影响[J]. 江汉石油学院学报, 1998, 20(1): 1- 6. |
[18] | 王敏, 秦伟军, 赵追, 等. 南襄盆地泌阳凹陷油气藏形成条件及聚集规律[J]. 石油与天然气地质, 2001, 22(2): 169-172. |
[19] |
CROUDACE I W, RINDBY A, ROTHWE ll R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner[J]. Geological Society of London Special Publications, 2006, 267: 51.
DOI URL |
[20] | ROTHWELL R. New Techniques in Sediment Core Analysis[M]. London: Geological Society of London, 2006:1-20. |
[21] |
WELTJE G J, TJALLINGII R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application[J]. Earth and Planetary Science Letters, 2008, 274(3): 423-438.
DOI URL |
[22] |
ZUO R, XIA Q, WANG H. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J]. Applied Geochemistry, 2013, 28: 202-211.
DOI URL |
[23] |
LÖWEMARK L, CHEN H F, YANG T N, et al. Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1250-1256.
DOI URL |
[24] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
DOI URL |
[25] | 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度[J]. 沉积学报, 1988, 6(4): 100-107. |
[26] | WALKER C T, PRICE N B. Departure curves for computing paleosalinity from boron in illities and shales[J]. AAPG Bulletin, 1963, 45(5): 833-841. |
[27] | 马素萍, 夏燕青, 田春桃, 等. 南襄盆地泌阳凹陷湖相碳酸盐岩烃源岩沉积环境的元素地球化学标志[J]. 矿物岩石地球化学通报, 2013, 32(4): 456-462. |
[28] |
JONES B, MANNING D A. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1): 111-129.
DOI URL |
[29] |
HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1): 65-82.
DOI URL |
[30] | 陈亮, 刘春莲, 庄畅, 等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报, 2009, 27(6): 1155-1162. |
[31] | 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境, 2011, 39(3): 405-414. |
[32] | LERMAN A. Lakes:Chemistry, Geology, Physics[M]. Beijing: Geological Press, 1978: 10-100. |
[33] | BEHL R J. Sedimentary facies and sedimentology of the Late Quaternary santa Barbara Basin,Site 8931[R]. Tulsa: Proceedings of the Ocean Drilling Program, Scientific Results, 1992:1-2. |
[34] |
LIU C, WANG P. The role of algal blooms in the formation of lacustrine petroleum source rocks — Evidence from Jiyang depression, Bohai Gulf Rift Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 15-22.
DOI URL |
[35] | 陈永权, 周新源, 赵葵东, 等. 塔里木盆地塔中 1 井藻纹层白云岩与竹叶状白云岩成因——基于岩石学、元素与同位素地球化学的厘定[J]. 地质学报, 2008, 82(6): 826-834. |
[36] |
KLINKHAMMER G P, LAMBERT C E. Preservation of organic matter during salinity excursions[J]. Nature, 1989, 339:271-274.
DOI |
[37] | 孙镇城, 杨藩, 张枝焕, 等. 中国新生代咸化湖泊沉积环境与油气生成[M]. 北京: 石油工业出版社, 1997:1-68, 115-149, 179-215. |
[38] | 张枝焕, 杨藩, 李东明, 等. 中国新生界咸化湖相有机地球化学研究进展[J]. 地球科学进展, 2000, 15(1): 65-70. |
[1] | 杨有星, 高永进, 张君峰, 周新桂, 张金虎, 白忠凯, 韩淼. 歧口和泌阳凹陷两种类型湖相碳酸盐岩沉积特点[J]. 现代地质, 2019, 33(04): 831-840. |
[2] | 郭来源,李忠生,解习农,尚飞,樊中海,刘峥君,吴峰. 湖相富有机质泥页岩地球化学元素高频变化及其地质意义:以泌阳凹陷BY1井取心段为例[J]. 现代地质, 2015, 29(6): 1360-1370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||