现代地质 ›› 2017, Vol. 31 ›› Issue (05): 1022-1038.
收稿日期:
2015-07-06
修回日期:
2017-06-03
出版日期:
2017-10-10
发布日期:
2017-11-06
作者简介:
梅冥相,男,教授,博士生导师,1965年出生,沉积学专业,主要从事沉积学与地层学研究。Email:meimingxiang@263.net。
基金资助:
Received:
2015-07-06
Revised:
2017-06-03
Online:
2017-10-10
Published:
2017-11-06
摘要:
以生氧光合作用为主造成的大气圈氧气上升,与生物进化存在着密切的成因联系。在大气圈氧气含量明显上升之前,微生物在地球大气圈演化中可能起着主要作用,形成了埃迪卡拉纪之前的微生物世界;甚至到今天,这些细菌以及其他的微体藻类,一直在向地球的大气圈提供氧气,而且在海洋中进行着艰苦的固氮作用。早期很少受到动物影响的生物圈,与现代动物所占据的生物圈(后生动物世界)明显不同,这个转变随着埃迪卡拉纪—寒武纪器官级别的动物辐射而发生,动物辐射造成了宏观生态和宏观进化表现的根本性变化。因此,地球大气圈的氧气上升,实际上是一个复杂的地球生物学过程;追索这个复杂的地球生物学过程所产生的环境变化及其与生物进化与革新之间的成因联系,对深入了解地球复杂的演变历史将提供一些重要线索和思考途径。
中图分类号:
梅冥相, 孟庆芬. 大气圈氧气上升与生物进化:一个重要的地球生物学过程[J]. 现代地质, 2017, 31(05): 1022-1038.
MEI Mingxiang, MENG Qingfen. The Rise of Atmosphere Oxygen and the Biological Evolution: An Important Geobiological Process[J]. Geoscience, 2017, 31(05): 1022-1038.
图1 太古宙以来主要的地质过程 A.碳同位素曲线,整个地球历史的δ13C记录,其中虚线代表了有限的资料,Campbell and Allen[40]运用了许多学者的资料综合而成,注意被定为巨型氧化作用事件的GOE、NOE和POE所代表的主要的大气圈氧气上升及其所代表的变冷过程,对应着明显的碳同位素异常事件代表的含氧碳循环的剧烈波动;B.冰川作用期,包括(1)地球上最古老的冰川作用(2.9 Ga),(2)休伦冰川作用(2 420~2 250 Ma),(3)1.8 Ga的King Leopold冰川作用,(4)720~658 Ma的Sturtian冰川作用,(5)655~635 Ma的Marinoan冰川作用,(6)584~582 Ma的Gaskiers冰川作用,(7)晚奥陶世冰川作用,(8)石炭纪—二叠纪冰川作用,(9)第四纪冰川作用;太古宙和古元古代冰川作用的作用时期是不确定的,所以用虚线表示;C.超大陆形成的时期(修改自文献[40]):[1] 地球上最古老的超大陆即基诺超大陆,[2] 奴纳乌提亚超大陆,[3] 哥伦比亚超大陆,[4] 罗迪利亚超大陆,[5] 冈瓦纳大陆,[6] 泛大陆;D.大气圈氧气含量变化曲线(修改自文献[27]),箭头所指代表相对较低的氧气含量周期,大气圈氧气含量上升的步骤表示为(1)至(7),说明见正文
Fig.1 Diagram showing the main geological processes since the Archean to the present
图2 展示了后生动物前与显生宙海洋生物圈的宏观生态和宏观进化差异性的概略性图解 大约100 Ma(635~541 Ma)的埃迪卡拉纪,标定了本质上存在差异的生命世界之间的回转;恒定不变的海洋生物量(较为宽泛地与生物大小相关),随着埃迪卡拉纪—奥陶纪三重营养结构的确立而急剧上升;在埃迪卡拉纪之前和之后,生态系均是“稳定的”,但是,稳定性的基础来源于生物圈本质上存在差异的动力;形态差异性曲线来源于微化石资料和多细胞生物中的细胞类型的数量;修改自Butterfield[20]
Fig.2 A schematic depiction of macroecological and macroevolutionary differences between the pre-metazoan and Phanerozoic marine biospheres
图3 天津蓟县剖面形态各异的宏观藻类化石 (A)箭头所指为类似于丘尔藻的化石;(B)箭头所指为球形丘尔藻化石的铸模;(C)新鲜的岩石破裂面上的类似于拟丘尔藻的化石;(D)新鲜的岩石破裂面上椭圆形的类似于寿县藻的化石:a为中心的髓部,b为边部,具有可能的原始生物组织分异;(E)新鲜的岩石破裂面上似球形的类似于丘尔藻的化石,涵义同照片(D);(F)各种形态的宏观藻类化石:a为类似于丘尔藻的化石,b为类似于寿县藻的化石;c为类似于荚藻的化石,d为类似于卵圆藻的化石,MT代表臼齿状构造
Fig.3 Various categories of fossils of megascopic algae reflected by different morphological features at the Jixian section in Tianjin
图4 显生宙大气圈氧气浓度变化与生物进化与革新之间的一个可能的联系 其上部和下部边界是模拟大气圈氧气浓度的边界误差,标有数字的间隔标注了重要的进化事件,这些事件可能与大气圈氧气浓度的变化存在联系。其中,(1)至(7)代表与氧气浓度上升存在关联的生物进化事件,(1)至(5)则代表与大气圈氧气浓度减小相关联的进化事件,修改自Berner et al.[24]
Fig.4 A possible link between the variation in atmospheric O2 concentration through the Phanerozoic and the evolution and development of life on Earth
[1] |
KASTING J F. Earth’s early atmosphere[J]. Science, 1993, 259: 920-926.
DOI URL |
[2] |
KEELING R F, BENDER M L, NAJJAR R G, et al. What atmospheric oxygen measurements can tell us about the global carbon cycle?[J]. Global Biogeochemical Cycles, 1993, 7: 37-67.
DOI URL |
[3] |
BERNER R A, BEERLING D J, DUDLEY R, et al. Phanerozoic atmospheric oxygen[J]. Annual Review of Earth and Planetary Sciences, 2003, 31: 105-134.
DOI URL |
[4] |
BERNER R A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta, 2006, 70: 5653-5664.
DOI URL |
[5] |
KUMP L R. The rise of atmospheric oxygen[J]. Nature, 2008, 451: 277-278.
DOI |
[6] |
HOLLAND H D. Why the atmosphere became oxygenated: a proposal[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5241-5255.
DOI URL |
[7] | 徐桂荣, 王永标, 龚淑云, 等. 生物与环境的协同演化[M]. 武汉: 中国地质大学出版社, 2005:1-293. |
[8] |
FALKOWSKI P G, KATZ M E, MILLIGAN A J, et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals[J]. Science, 2005, 309: 2202-2204.
PMID |
[9] | FALKOWSKI P G, GODFREY L V. Electrons, life and the evolution of Earth’s oxygen cycle[J]. Philosophical Transaction of the Royal Society (B), 2008, 363: 2705-2716. |
[10] | 殷鸿福, 杨逢清, 谢树成, 等. 生物地质学[M]. 武汉: 中国地质大学出版社, 2004:1-264. |
[11] | 谢树成, 殷鸿福, 史晓颖, 等. 地球生物学: 生物与地球环境的相互作用与协同演化[M]. 北京: 科学出版社, 2011:1-345. |
[12] | 梅冥相. 长周期层序形成机制的探索:层序地层学的进展之二[J]. 古地理学报, 2010, 12(6): 711-728. |
[13] | 梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评, 2012, 58(5): 937-951. |
[14] |
CONDIE K C, O’NEILL C, ASTER R C. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth[J]. Earth and Planetary Science Letters, 2009, 282: 294-298.
DOI URL |
[15] |
ERIKSSON P G, CATUNEANU O, NELSON D R, et al. Events in the Precambrian history of the Earth: Challenges in discriminating their global significance[J]. Marine and Petroleum Geology, 2010, 30: 1-18.
DOI URL |
[16] |
GROTZINGER J P, FIKE D A, FISCHER W W. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history[J]. Nature Geoscience, 2011, 4: 285-292.
DOI |
[17] |
KUMP L R, JUNIUM C, ARTHUR M A, et al. Isotopic evidence for massive oxidation of organic matter following the great oxidation event[J]. Science, 2011, 334: 1694-1696.
DOI PMID |
[18] | SESSIONS A L, DOUGHTY D M, WELANDER P V, et al. The continuing puzzle of the Great Oxidation Event[J]. Current Bio-logy, 2009, 19: 567-574. |
[19] |
KASTING J F, SIEFERT J L. Life and the evolution of Earth’s atmosphere[J]. Science, 2002, 296: 1066-1068.
DOI URL |
[20] |
BUTTERFIELD N J. Animals and the invention of the Phanerozoic Earth system[J]. Trends in Ecology and Evolution, 2011, 26: 81-87.
DOI URL |
[21] |
KNOLL A H. Systems paleobiology[J]. GSA Bulletin, 2013, 125: 3-13.
DOI URL |
[22] |
SPERLINGA E A, FRIEDER C A, RAMAN A V, et al. Oxygen, ecology, and the Cambrian radiation of animals[J]. Proceedings of the National Academy of Sciences, 2013, 110: 13446-13451.
DOI URL |
[23] |
FALKOWSKI P G, ISOZAKI Y. The story of O2[J]. Science, 2008, 322: 540-542.
DOI URL |
[24] |
BERNER R A, VANDENBROKKS J M, WARD P D. Oxygen and evolution[J]. Science, 2007, 316: 557-558.
DOI URL |
[25] |
PAVLOV A A, KASTING J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2002, 2: 27-41.
PMID |
[26] |
GUO Q, STRAUSS H, KAUFMAN A J, et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition[J]. Geology, 2009, 37: 399-402.
DOI URL |
[27] | CANFIELD D E. The early history of atmospheric oxygen: Homage to Robert M. Garrels[J]. Annual Review of Earth and Plane-tary Science, 2005, 33: 1-36. |
[28] |
ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygen before the Great Oxidation Event?[J]. Science, 2007, 317: 1903-1906.
PMID |
[29] |
ANBAR A D, KNOLL A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science, 2002, 297: 1137-1142.
PMID |
[30] |
ANBAR A D, ROUXEL O. Metal stable isotopes in paleoceanography[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 717-746.
DOI URL |
[31] |
LYONS T W, REINHARD C T. Early Earth: oxygen for heavy-metal fans[J]. Nature, 2009, 461:179-181.
DOI |
[32] |
KAH L C, BARTLEY J K. Protracted oxygenation of the Proterozoic biosphere[J]. International Geology Review, 2011, 53: 1424-1442.
DOI URL |
[33] |
CATLING D C, GLEIN C R, ZAHNLE K J, et al. Why O2 is required by complex life on habitable planets and the concept of planetary ‘oxygenation time’?[J]. Astrobiology, 2005, 5: 415-438.
DOI URL |
[34] |
HOASHI M, BEVACQUA D C, OTAKE T, et al. Primary haematite formation in an oxygenated sea 3.46 billion years ago[J]. Nature Geoscience, 2009, 2: 301-306.
DOI |
[35] |
CROWE S A, DØSSING L N, BEUKES N J, et al. Atmospheric oxygenation three billion years ago[J]. Nature, 2013, 501: 535-539.
DOI |
[36] |
OLSON S L, KUMP L R, KASTING J F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases[J]. Chemistry Geology, 2013, 362: 35-43.
DOI URL |
[37] |
RIDING R, FRALICK P, LIANG Liyuan. Identification of an Archean marine oxygen oasis[J]. Precambrian Research, 2014, 251: 232-237.
DOI URL |
[38] |
KIRSCHVINK J L, GAIDOS E J, BERTANI L E, et al. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences[J]. Proceedings of the National Academy of Sciences, 2000, 97: 1400-1405.
DOI URL |
[39] |
CANFIELD D E, TESKE A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 382: 127-132.
DOI |
[40] |
CAMPBELL I H, ALLEN C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1: 554-558.
DOI |
[41] |
CAMPBELL I H, SQUIRE R J. The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event[J]. Geochimica et Cosmochimica Acta, 2010, 74: 4187-4206.
DOI URL |
[42] | SHIELDS-Zhou G, OCH L. The case for a Neoproterozoic oxygenation event: Geochemical evidence and biological consequences[J]. GSA Today, 2011, 21: 4-11. |
[43] | SHIELDS-Zhou G A, HILL A C, MACGABHANN B A. The Cryogenian Period (Chapter 17)[M]// GRADSTEINF M, OGGJ G, SCHMITZM D, et al. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012:393-411. |
[44] |
OCH L M, SHIELDS-Zhou G A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110: 26-57.
DOI URL |
[45] |
TZIPERMANA E, HALEVYB I, JOHNSTONA D T, et al. Biologically induced initiation of Neoproterozoic snowball-Earth events[J]. Proceedings of the National Academy of Sciences, 2011, 108: 15091-15096.
DOI URL |
[46] | WILLE M, KRAMERS J D, NÄGLER T F, et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochimica et Cosmochi-mica Acta, 2007, 71: 2417-2435. |
[47] |
ASPLER L B, CHIARENZELLI J R. Two Neoarchean supercontinents? Evidence from the Paleoproterozoic[J]. Sedimentary Geology, 1998, 120: 75-104.
DOI URL |
[48] |
PIRAJNO F, HOCKING R M, REDDY S M, et al. A review of the geology and geodynamic evolution of the Palaeoproterozoic Earaheedy Basin, Western Australia[J]. Earth-Science Reviews, 2009, 94: 39-77.
DOI URL |
[49] |
PLANAVSKY N, ROUXEL O, BEKKER A, et al. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans[J]. Earth and Planetary Science Letters, 2009, 286: 230-242.
DOI URL |
[50] |
POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3: 486-490.
DOI |
[51] | VAN KRANENDONK M J, ALTERMANN W, BEARD B L, et al. A chronostratigraphic division of the Precambrian[M]// GRADSTEINF M, OGGJ G, SCHMITZM D, et al. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 299-392. |
[52] | PEHRSSON S J, JEFFERSON C. Riding the supercontinent cycle[M]//American Geophysical Union. Paleoproterozoic Basins and Their Metal Endowment. Toronto: Geological Association of Canada and Mineralogical Association of Canada Joint Assembly, 2009: 736-701. |
[53] |
WILLIAMS G E. Subglacial meltwater channels and glaciofluvial deposits in the Kimberley Basin, Western Australia: 1.8 Ga low-latitude glaciation coeval with continental assembly[J]. Journal of the Geological Society of London, 2005, 162: 111-124.
DOI URL |
[54] |
WILLIAMS G E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests[J]. Earth-Science Reviews, 2008, 87: 61-93.
DOI URL |
[55] |
KAH L C, LYONS TW, FRANK T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere[J]. Nature, 2004, 431: 834-838.
DOI |
[56] |
DERRY L A, FRANCE-Lanord C. Neogene growth of the sedimentary organic carbon reservoir[J]. Paleoceanography, 1996, 11: 267-275.
DOI URL |
[57] |
GODDERIS Y, FRANCOIS L M. Balancing the Cenozoic carbon and alkalinity cycles: Constraints from isotopic record[J]. Geophysics Research Letters, 1996, 23: 3743-3746.
DOI URL |
[58] |
AMELIN Y, CONNELLY J, ZARTMAN R E, et al. Modern U-Pb chronometry of meteorites: Advancing to higher time resolution reveals new problems[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5212-5223.
DOI URL |
[59] |
NYQUIST L E, KLEINE T, SHIH C Y, et al. The distribution of short-lived radioisotopes in the early solar system and the chrono-logy of asteroid accretion, differentiation, and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5115-5136.
DOI URL |
[60] |
BOUVIER A, WADHWA M. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion[J]. Nature Geoscience, 2010, 3: 637-641.
DOI |
[61] |
KASTING J F, CATLING D. Evolution of a habitable planet[J]. Annual Review of Astronomy and Astrophysics, 2003, 41: 429-463.
DOI URL |
[62] | TAYLOR S R. The formation of the Earth and Moon[M]// VAN KRANENDONK M J, SMITHIESR H, BENNETTV.Earth’s Oldest Rocks. Developments in Precambrian Geology, 15. Amsterdam: Elsevier, 2007: 21-30. |
[63] |
ZAHNLE K, ARNDT N, COCKELL C, et al. Emergence of a habitable planet[J]. Space Science Reviews, 2007, 129: 35-78.
DOI URL |
[64] | GOLDBLATT C, ZAHNLE K J, SLEEP N H, et al. The Eons of Chaos and Hades[J]. Solid Earth Discussion, 2009, 1: 47-53. |
[65] |
RUSSELL M J, HALL A J, MARTIN W. Serpentinization as a source of energy at the origin of life[J]. Geobiology, 2010, 8: 355-371.
DOI PMID |
[66] |
FALKOWSKI P G. Tracing oxygen’s imprint on Earth’s metabolic evolution[J]. Science, 2006, 311: 1724-1725.
DOI URL |
[67] |
HOLM N G, NEUBECK A. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis[J]. Geochemical Transactions, 2009, 10: 1-9.
DOI |
[68] |
BLANK C E, SÁNCHEZ-Baracaldo P. Timing of morphological and ecological innovations in the cyanobacteria: A key to understanding the rise in atmospheric oxygen[J]. Geobiology, 2010, 8: 1-23.
DOI URL |
[69] |
PAYNE J L, MCCLAIN C R, BOYER A G, et al. The evolutionary consequences of oxygenic photosynthesis: A body size perspective[J]. Photosynthesis Research, 2011, 107: 37-57.
DOI PMID |
[70] |
YOUNG G M, VON BRUNN V, GOLD D J C, et al. Earth’s oldest reported glaciation: Physical and chemical evidence from the Archean Mozaan Group (-2.9 Ga) of South Africa[J]. Journal of Geology, 1998, 106: 523-538.
DOI URL |
[71] |
NISBET E G, GRASSINEAU N V, HOWE C J, et al. The age of Rubisco: the evolution of oxygenic photosynthesis[J]. Geobiology, 2007, 5: 311-335.
DOI URL |
[72] | ROSING M T, BIRD D K, SLEEP N H, et al. The rise of continents: An essay on the geologic consequences of photosynthesis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232: 29-41. |
[73] |
LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in Microbial Physiology, 2004, 49: 219-286.
PMID |
[74] |
CATLING D C, ZAHNLE K J, MCKAY C P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth[J]. Science, 2001, 293: 839-843.
PMID |
[75] |
SIEBERT C, KRAMERS J D, MEISEL T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69: 1787-1801.
DOI URL |
[76] |
ALLWOOD A C, WALTER M R, KAMBER B S, et al. Stromatolite reef from the Early Archaean era of Australia[J]. Nature, 2006, 441: 714-718.
DOI |
[77] |
AWRAMIK S M. Respect for stromatolites[J]. Nature, 2006, 441: 700-701.
DOI |
[78] | ALTERMANN W. Accretion, trapping and binding of sediment in Archaean stromatolites: Morphological expression of the antiquity of life[J]. Space Sciences Reviews, 2008, 135: 55-79. |
[79] | MARGULIS L, SAGAN D. Microcosmos: Four Billion Years of Microbial Evolution[M]. Berkeley: University of California Press, 1986: 1-300. |
[80] |
HAN T-M, RUNNEGAR B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan[J]. Science, 1992, 257: 232-235.
PMID |
[81] |
ALBANI A E, BENGTSON S, CANFIELD D E, et al. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago[J]. Nature, 2010, 466: 100-104.
DOI |
[82] |
DUTKIEWICZ A, GEORGE S C, MOSSMAN D, et al. Oil and its biomarkers associated with the Paleoproterozoic Oklo natural fission reactors, Gabon[J]. Chemical Geology, 2007, 244: 130-154.
DOI URL |
[83] |
RASMUSSEN B, FLETCHER I R, BENGSTON S, et al. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota[J]. Precambrian Research, 2004, 133: 329-337.
DOI URL |
[84] |
BENGSTON S, RASMUSSEN B, KRAPEZ B. The Paleoproterozoic megascopic Stirling biota[J]. Paleobiology, 2007, 33: 351-381.
DOI URL |
[85] | HOFMANN H J. Precambrian microflora, Belcher Islands, Canada: Significance and systematics[J]. Journal of Paleontology, 1976, 50: 1040-1073. |
[86] | AKHMEDOV A M, BELOVA M Y, KRUPENIK V A, et al. Fungous microfossils from Paleoproterozoic black shales of the Pechenga Complex in the Kola Peninsula[J]. Doklady Earth Science, 2000, 373: 782-785. |
[87] |
HEDGES B S, CHEN H, KUMAR S, et al. A genomic timescale for the origin of eukaryotes[J]. BMC Evolutionary Biology, 2001, 1: 4-6.
PMID |
[88] |
WALDBAUER J R, SHERMAN L S, SUMNER D Y, et al. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis[J]. Precambrian Research, 2009, 169: 28-47.
DOI URL |
[89] | 孙淑芬, 朱士兴. 五台山滹沱群豆村亚群(大约24亿年)中原植体的发现[J]. 微体古生物学报, 1998, 15: 286-293. |
[90] |
MARTIN D M, LI Z X, NEMCHIN A A, et al. A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia[J]. Economic Geology, 1998, 93: 1084-1090.
DOI URL |
[91] |
KNOLL A H. The early evolution of Eukaryotes. A geological perspective[J]. Science, 1992, 256: 622-625.
DOI URL |
[92] |
LAMB D M, AWRAMIK S M, CHAPMAN D J, et al. Evidence for eukaryotic diversification in the-1 800 million-year-old Chang-zhougou Formation, North China[J]. Precambrian Research, 2009, 173: 93-104.
DOI URL |
[93] |
ZHU S, CHEN H. Megascopic multicellular organisms from the 1 700-million-year-old Tuanshanzi Formation in the Jixian area, North China[J]. Science, 1995, 270: 620-622.
DOI URL |
[94] |
HAINES P W. Tool marks from ca 1 750 Ma, northern Australia: Evidence for large drifting algal filaments?[J]. Geology, 1997, 25: 235-238.
DOI URL |
[95] |
SARANGI S, GOPALAN K, KUMAR S. Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: Implications for Precambrian atmospheric oxygen evolution[J]. Precambrian Research, 2004, 132: 107-121.
DOI URL |
[96] |
SHARMA M, SHUKLA Y. Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India[J]. Precambrian Research, 2009, 173: 105-122.
DOI URL |
[97] | 杜汝霖. 前寒武纪古生物学与地史学[M]. 北京: 地质出版社, 1992:9-68. |
[98] | WALTER M R, OEHLER J H, OEHLER D Z. Megascopic algae 1 300 million years old from the Belt Supergroup, Montana: A reinterpretation of Walcott’s Helminthoidichnites[J]. Journal of Paleontology, 1976, 50: 872-881. |
[99] |
GLASS J B, WOLFE-Simon F, ANBAR A. Coevolution of metal availability and nitrogen assimilation in Cyanobacteria and algae[J]. Geobiology, 2009, 7: 100-123.
DOI URL |
[100] |
SCHADE J D, ESPELETA J F, KLAUSMEIER C A, et al. A conceptual framework for ecosystem stoichiometry: Balancing resource supply and demand[J]. Oikos, 2005, 109: 40-51.
DOI URL |
[101] |
JAVAUX E J, KNOLL A H, WALTER M R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans[J]. Geobiology, 2004, 2: 121-132.
DOI URL |
[102] |
KNOLL A H, WALTER M R, NARBONNE G M, et al. A new period for the geologic time scale[J]. Science, 2004, 305: 621-622.
DOI URL |
[103] |
NAGOVITSIN K. Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints[J]. Precambrian Research, 2009, 173: 137-145.
DOI URL |
[104] |
PARNELL J, BOYCE A J, MARK D, et al. Early oxygenation of the terrestrial environment during the Mesoproterozoic[J]. Nature, 2010, 468: 290-293.
DOI |
[105] |
MARTIN D M. Depositional environment and taphonomy of the ‘strings of beads’: Mesoproterozoic multicellular fossils in the Bangemall Supergroup, Western Australia[J]. Australian Journal of Earth Sciences, 2004, 51: 555-561.
DOI URL |
[106] |
KNAUTH L P, KENNEDY M J. The late Precambrian greening of the Earth[J]. Nature, 2009, 460: 728-732.
DOI |
[107] |
PORTER S M. The fossil record of early eukaryote diversification[J]. Paleontological Society Papers, 2004, 10: 35-50.
DOI URL |
[108] | 梅冥相. 燕山地区中元古代高于庄组非叠层石碳酸盐序列的沉积特征及其重要意义[J]. 现代地质, 2007, 21(1): 45-56. |
[109] | 梅冥相. 中元古代叠层石—非叠层石碳酸盐岩层序地层序列及其沉积特征[J]. 现代地质, 2007, 21(2): 387-396. |
[110] | 梅冥相. 前寒武纪 “臼齿状构造谜”的一些认识: 来自天津蓟县剖面中元古代高于庄中的一些信息[J]. 古地理学报, 2007, 9(6): 587-609. |
[111] | 梅冥相. 天津蓟县中元古界高于庄组“球形臼齿状构造” 新解: 1 400 Ma以前球形或似球形实体宏观藻类化石的细胞显微结构[J]. 现代地质, 2007, 21(4): 687-699. |
[112] |
SHARMA M, MISHRA S, DUTTA S, et al. On the affinity of Chuaria-Tawuia complex: A multidisciplinary study[J]. Precambrian Research, 2009, 173: 123-136.
DOI URL |
[113] |
KUMAR S. Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India[J]. Precambrian Research, 2001, 106: 187-211.
DOI URL |
[114] |
BROCKS J J, LOVE G D, SUMMONS R E, et al. Biomarker evidence for green and purple sulfur bacteria in an intensely stratify Paleoproterozoic ocean[J]. Nature, 2005, 437: 866-870.
DOI |
[115] |
JOHNSTON D T, WOLFE-Simon F, PEARSON A, et al. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age[J]. Proceedings of the National Academy of Sciences, 2009, 106: 16925-16929.
DOI URL |
[116] |
JOHNSTON D T, POULTON S W, DEHLER C, et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA[J]. Earth and Planetary Science Letters, 2010, 290: 64-73.
DOI URL |
[117] | GAIDOS E. The biogeochemical context of animal origins[M]// DESALLER, SCHIERWATERB. Key Transitions in Animal Evolution. Boca Raton of Florida: CRC Press, 2010: 345-359. |
[118] |
BUICK R. Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse?[J]. Geobiology, 2007, 5: 97-100.
DOI URL |
[119] |
SAITO M A, SIGMAN D M, MOREL F M M. The bioinorganic chemistry of the ancient ocean: The coevolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary?[J]. Inorganica Chimica Acta, 2003, 356: 308-318.
DOI URL |
[120] |
NEUWEILER F, TURNER E C, BURDIGE D J. Early Neopro-terozoic origin of the metazoan clade recorded in carbonate rock texture[J]. Geology, 2009, 37: 475-478.
DOI URL |
[121] |
MALOOF A C, ROSE C V, BEACH R, et al. Possible animalebody fossils in pre-Marinoan limestones from South Australia[J]. Nature Geoscience, 2010, 3: 653-659.
DOI |
[122] |
BAO H, LYONS J R, ZHOU C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation[J]. Nature, 2008, 453: 504-506.
DOI |
[123] |
LOVE G D, GROSJEAN E, STALVIES C, et al. Fossil steroids record the appearance of Demospongiae during the Cryogenian period[J]. Nature, 2009, 457: 718-721.
DOI |
[124] | SHIELDS-Zhou G, OCH L. The case for a Neoproterozoic oxygenation event: Geochemical evidence and biological consequences[J]. GSA Today, 2011, 21: 4-11. |
[125] |
YUAN X, CHEN Z, XIAO S, et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes[J]. Nature, 2011, 470: 390-393.
DOI |
[126] |
KNOLL A H, CARROLL S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284: 2129-2137.
PMID |
[127] | KNOLL A H. Life on A Young Planet: The First Three Billion Years of Evolution on Earth[M]. Princeton: Princeton University Press, 2003:1-277. |
[128] |
YIN L, ZHU M, KNOLL A H, et al. Doushantuo embryos preserved inside diapause egg cysts[J]. Nature, 2007, 446: 661-663.
DOI |
[129] |
SAUL J M. Did detoxification processes cause complex life to emerge?[J]. Lethaia, 2009, 42: 179-184.
DOI URL |
[130] |
WANG X, HU S, GAN L, et al. Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: Biomineralization and the concept of their evolutionary success[J]. Terra Nova, 2009, 22: 1-11.
DOI URL |
[131] |
NARBONNE G M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems[J]. Annual Reviews of Earth and Planetary Sciences, 2005, 33: 421-442.
DOI URL |
[132] | NARBONNE G M, XIAO S, SHIELDS G A. The Ediacaran Period (Chapter 18)[M]// GRADSTEINF M, OGGJ G, SCHMITZM D, et al. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012: 413-435. |
[133] |
FIKE D A, GROTZINGER J P, PRATT L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444: 744-747.
DOI |
[134] |
CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315: 92-95.
PMID |
[135] |
MACDONALD F A, SCHMITZ M D, CROWLEY J L, et al. Calibrating the Cryogenian[J]. Science, 2010, 327: 1241-1243.
DOI PMID |
[136] |
BUTTERFIELD N J. Macroevolution and macroecology through deep time[J]. Palaeontology, 2007, 50: 41-55.
DOI URL |
[137] |
BUTTERFIELD N J. Oxygen, animals and oceanic ventilation—an alternative view[J]. Geobiology, 2009, 7: 1-7.
DOI URL |
[138] |
LI C, LOVE G D, LYONS T W, et al. A stratified redox modelfor the Edicaran ocean[J]. Science, 2010, 328: 80-83.
DOI URL |
[139] |
JOHNSTON D T, GOLDBERG T, POULTON S W, et al. Late Ediacaran redox stability and metazoan evolution[J]. Earth and Planetary Science Letters, 2012, 335-336: 25-35.
DOI URL |
[140] |
ERWIN D H, LAFLAMME M, TWEEDT S, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334: 1091-1097.
DOI PMID |
[141] |
SPERLINGA E A, FRIEDER C A, RAMAN A V, et al. Oxygen, ecology, and the Cambrian radiation of animals[J]. Proceedings of the National Academy of Sciences, 2013, 110: 13446-13451.
DOI URL |
[142] | BERNER R A. The Phanerozoic Carbon Cycle: CO2 and O2[M]. Oxford: Oxford University Press, 2004:1-498. |
[143] | HARRISON J, FRZIER M R, HENRY J R, et al. Responses of terrestrial insects to hypoxia or hyperoxia[J]. Respired Physiology Neurobiology, 2006, 154: 4-17. |
[144] | FRAZIER M R, WOODS H A, HARRISON J F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster[J]. Physiological and Biochemistric Zoology, 2001, 74: 641-650. |
[145] |
HENRY J R, HARRISON J F. Plastic and evolved responses of larval tracheae and mass to varying atmospheric oxygen content in Drosophila melanogaster[J]. Journal of Experimental Biology, 2004, 207: 3559-3567.
PMID |
[146] |
PAYNE J L, MCCLAIN C R, BOYER A G, et al. The evolutionary consequences of oxygenic photosynthesis: A body size perspective[J]. Photosynthesis Research, 2011, 107: 37-57.
DOI PMID |
[147] |
GRAHAM J B, AGUILAR N M, DUDLEY R, et al. Implications of the late Paleozoic oxygen pulse for physiology and evolution[J]. Nature, 1995, 375:117-120.
DOI |
[148] |
FALKOWSKI P G, KATZ M E, MILLIGAN A J, et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals[J]. Science, 2005, 309: 2202-2204.
PMID |
[149] | WARD P D. Out of Thin Air[M]. Washington: Joseph Henry, 2006:1-526. |
[150] |
PAYNE J L. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval[J]. Paleobiology, 2005, 31: 269-290.
DOI URL |
[1] | 梅冥相,高金汉. 叠层石形成的光合作用信号:来自于锥状叠层石形态学研究的精妙启示[J]. 现代地质, 2015, 29(6): 1328-1337. |
[2] | 王根厚. 胡玲.. 第32届国际地质大会构造地质研究进展综述[J]. 现代地质, 2004, 18(4): 423-428. |
[3] | 张达. 吴淦国.. 第32届国际地质大会区域地质研究进展[J]. 现代地质, 2004, 18(4): 429-434. |
[4] | 张达. 吴淦国.. 第32届国际地质大会造山带和蛇绿岩研究进展[J]. 现代地质, 2004, 18(4): 443-448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||