欢迎访问现代地质!

现代地质 ›› 2007, Vol. 21 ›› Issue (Suppl): 142-147.

• 地球探测与空间信息技术 • 上一篇    下一篇

航空遥感高光谱数据的聚类种子点选择和降维

刘雪峰, 姬光荣, 程军娜, 付民   

  1. 中国海洋大学 信息学院电子系,山东 青岛266071
  • 收稿日期:2006-11-20 修回日期:2006-12-30 出版日期:2007-08-20 发布日期:2007-08-20
  • 作者简介:刘雪峰,女,博士研究生,1977年出生,信息探测与处理专业,主要从事模式识别、图像处理研究。

Optimizing Seed Point Selection in RPCCL Clustering and Dimensionality Reduction of High Dimensions' Data

LIU Xue-feng, JI Guang-rong, CHENG Jun-na, FU Min   

  1. Electronic Department of Information College, Ocean University of China, Qingdao, Shandong266071, China
  • Received:2006-11-20 Revised:2006-12-30 Online:2007-08-20 Published:2007-08-20

摘要:

次胜者受罚的有约束竞争学习(rival penalized controlled competitive learning, RPCCL)算法已被广泛地用于航空遥感高光谱数据的聚类问题,但是它的性能对初始聚类中心的选择很敏感。对RPCCL算法进行了深入的研究并提出了一种优化种子点选择的方法。这种方法的主要思想是选择局部密度最大并且不相邻的数据点作为种子点即初始聚类中心。与传统的随机选取种子点的RPCCL方法相比,用优化种子点进行的RPCCL聚类能更稳定、更有效地收敛。而且,这种方法可以很好地用于赤潮和溢油高光谱数据的处理。另外,由于高光谱数据中有大量的冗余数据,使得聚类的效率非常低,为此我们使用了一种基于敏感维的数据降维方法。实验结果显示了优化种子点选择和敏感维的数据降维方法的显著效果,同时预示了这种改进的RPCCL算法的良好前景。

关键词: RPCCL, 聚类, 种子点, 数据降维, 类中心

Abstract:

RPCCL (rival penalization controlled competitive learning) algorithm has been extensively used in clustering problems of the aerial remote sensing hyper-spectral data but its performance is sensitive to the selection of the initial cluster center. This paper, therefore, further investigates the RPCCL and proposes an optimizing seed point selection which chooses non-neighbor data points of the greatest local density as seed points. Compared to the existing RPCCL with random seed points, the clustering by this RPCCL with selecting seed points can converge more stably and effectively. Moreover, it is applicable to deal with the data in red tide and oil spill aerial remote sensing hyper-spectral data image. Additionally, the efficiency of the clustering is very low because of the redundancy of high dimensions in the hyper-spectral data. Therefore a dimensionality reduction method is described to solve this problem. The experiments show the promising results of this improved RPCCL approach and the dimensionality reduction implementation.

Key words: RPCCL, clustering, seed point, data dimensionality reduction, cluster center

中图分类号: