欢迎访问现代地质!

现代地质 ›› 2007, Vol. 21 ›› Issue (2): 241-246.

• 岩浆作用与岩浆岩 • 上一篇    下一篇

金伯利岩中“熔离小球”的特征及其成因

路凤香1,张宏福2,陈美华3,郑建平1,尹作为3,任迎新1,赵崇贺4,叶德隆1   

  1. 1中国地质大学 地球科学学院,湖北 武汉430074;2中国科学院 地质与地球物理研究所,北京100029;
    3中国地质大学 珠宝学院,湖北 武汉430074; 4中国地质大学 地球科学与资源学院,北京100083
  • 收稿日期:2006-10-20 修回日期:2007-01-20 出版日期:2007-02-20 发布日期:2007-02-20
  • 作者简介:路凤香,女,教授,博士生导师,1935年出生,岩石学专业,主要从事火成岩石学、地幔岩石学、壳幔深部过程及金刚石找矿理论研究。Email: lufx@263.net。
  • 基金资助:

    国家自然科学基金项目(40272021)

Characteristics and Their Genesis of Immiscible Small-balls in Kimberlites

LU Feng-xiang1, ZHANG Hong-fu2, CHEN Mei-hua3, ZHENG Jian-ping1, YIN Zuo-wei3, REN Ying-xin1,ZHAO Chong-he4, YE De-long1   

  1. 1.Faculty of Earth Sciences, China University of Geosciences, Wuhan,Hubei430074;2Institute of Geology and Geophysics,
    Chinese Academy of Sciences,Beijing100029;3Gemmological Institute, China University of Geosciences, Wuhan,Hubei430074;
    4School of Earth Sciences and Resources, China University of Geosciences, Beijing100083
  • Received:2006-10-20 Revised:2007-01-20 Online:2007-02-20 Published:2007-02-20

摘要:

在金伯利岩人工重砂中发现的“熔离小球”,直径多数<1 mm,除个别出现微晶外,均为非晶质,属于熔体淬火冷却产物。提供了29个小球的主元素分析和3件微量元素分析结果。“熔离小球”按成分可分为3种类型:(1)高铁钛小球;(2)硫铁镍小球;(3)浅色硅铝质小球。其中高铁小球w(FeO)高达99.39%,高钛小球w(TiO2)达45.90%,它们含MnO也偏高,最高达23.75%。Fe、Mn、Ti都属于高负电性元素,在熔体中与氧结合的键强度大,容易发生熔离。硫铁镍小球的w(SO3)变化于38.27%~51.95%,w(FeO)为0.31%~23.10%,w(NiO)为25.24%~61.05%。浅色小球w(SiO2)变化范围为24.01%~52.64%,Al2O3、CaO含量高但变化范围大,总体成分接近基性—超基性硅酸盐熔浆。主元素、微量元素特征以及硫铁镍小球中发现了高镁(Fo=0.95)橄榄石捕虏晶表明,小球形成于金伯利岩岩浆的介质环境。此外高铁及硅铝质两种成分呈交生结构的两相小球的发现,暗示二者为熔离作用成因。小球的熔离作用可以应用SiO2-FeS-FeO的液态不混溶相图做出解释。认为小球形成于岩浆结晶的晚期阶段,相对富含CO2 、SO3、FeO、MnO、TiO2,在岩浆快速上升、快速降温、降压、熔体中出现了多种局部有序区的条件下发生的。

关键词: 熔离小球, 金伯利岩, 高铁钛小球, 硫铁镍小球, 浅色硅铝质小球, 岩浆不混熔

Abstract:

Few“Immiscible small balls”(called “balls”)were discovered in kimberlite heavy mineral concentrates. These balls are dominantly <1mm in diameter and have isotropic structure except few balls with microlite, which implies that they are quenching products from kimberlitic melts. Twenty-nine major element compositions and three trace element analyses are provided in this paper. According to the major element compositions, three types of balls can be divided:(1)high Fe-Ti balls;(2)S-Fe-Ni balls;(3)light-colored sialic balls. The high Fe-Ti balls have the highest FeO(up to 99.39%)and TiO2(up to 45.90%)contents. They also have relatively high MnO contents(up to 23.75%). Fe, Ti, and Mn elements have high electro negativity, which have penitential to form very strong bone with oxygen in melts. Thus they are easier to separate from the host melts through the immiscibility. The S-Fe-Ni balls have SO3, FeO and NiO contents ranging from 38.27%-51.95%, 0.31%-23.10%,and 25.24%-61.05%, respectively. SiO2, Al2O3 and CaO oxides are dominant components in light-colored sialic balls with the SiO2 contents in a range of 24.01%-52.64%, corresponding to the compositions of basic to ultra-basic magmas. Characteristics of major and trace elements and the discovery of olivine xenocryst(Fo=0.95)in a S-Fe-Ni ball demonstrate that these balls were formed from kimberlitic magma. The occurrence of twophase(high-Fe and sialic)intergrown ball illustrates that high-Fe and sialic balls were produced from magma immiscibility. The formation of three type balls can be clearly explained with the SiO2-FeS-FeO phase diagram. We consider that immiscible small balls were formed at late stage of magma crystallization with decreasing temperature and pressure. The magma enriched in CO2 、SO3、FeO、TiO2、MnO uplift and chilled very rapidly to form many local order areas in melts that produced these balls.

Key words: immiscible small balls, kimberlite, high Fe-Ti ball, S-Fe-Ni ball, light-colored sialic ball, magma immiscibility

中图分类号: