欢迎访问现代地质!

现代地质 ›› 2025, Vol. 39 ›› Issue (02): 396-409.DOI: 10.19657/j.geoscience.1000-8527.2024.124

• 表生资源观测模拟与综合评价 • 上一篇    下一篇

县域尺度下首都经济圈生境质量时空变化与影响因素分析

朱梅涛1,2,3(), 邢莉圆2,4(), 牛学瑶1, 刘晓煌2,4, 武杰1, 宋东阳1, 龚伦1, 安洪岩1   

  1. 1.中国地质调查局廊坊自然资源综合调查中心,河北 廊坊 065000
    2.自然资源要素耦合过程与效应重点实验室,北京 100055
    3.中国地质大学(北京),北京 100083
    4.中国地质调查局自然资源综合调查指挥中心,北京 100055
  • 出版日期:2025-04-10 发布日期:2025-05-08
  • 通信作者: 邢莉圆,女,工程师,1995年出生,主要从事自然资源综合观测研究工作。Email: cugbxly@163.com
  • 作者简介:朱梅涛,男,工程师,1995年出生,主要从事环境科学与资源利用研究工作。Email: lfzxzmt@163.com
  • 基金资助:
    自然资源部矿业城市自然资源调查监测与保护重点实验室开放基金项目(2023-B06);中国地质调查局项目“河北丰宁—青龙金多金属矿产调查评价”(DD20242631);自然资源综合调查指挥中心科技创新基金项目(KC20230005);自然资源综合调查指挥中心科技创新基金项目(KC20220008);河北省高校生态环境地质应用技术研发中心开放研究基金项目(JSYF-202306)

County-Scale Spatiotemporal Dynamics and Drivers of Habitat Quality in the Capital Economic Zone

ZHU Meitao1,2,3(), XING Liyuan2,4(), NIU Xueyao1, LIU Xiaohuang2,4, WU Jie1, SONG Dongyang1, GONG Lun1, AN Hongyan1   

  1. 1. Langfang Comprehensive Survey Center of Natural Resources, China Geological Survey, Langfang, Hebei 065000 China
    2. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    3. China University of Geosciences(Beijing), Beijing 100083, China
    4. Comprehensive Survey Command Center of Natural Resources,China Geological Survey, Beijing 100055, China
  • Published:2025-04-10 Online:2025-05-08

摘要: 为评估首都经济圈生境质量时空变化及其驱动因素的时空异质性,以多源异构遥感数据和生物物理模型为基础,评估首都经济圈1990至2020年的生境质量,利用空间相关性分析探究首都经济圈生境质量空间分异特征,之后采用时空地理加权回归模型(GTWR)揭示自然环境、社会经济和景观格局等因素对首都经济圈生境质量影响的时空异质性。结果表明:(1)首都经济圈生境质量的分布格局与土地利用类型密切相关,林地生境质量得分高,建设用地和耕地生境质量得分低,多年分布格局总体较稳定。整体生境质量平均下降约3.51%,以快速城镇化的天津和廊坊两市最为显著,分别下降约23%和21%;(2)1990至2020年首都经济圈生境质量空间上存在正相关性,总体呈现高-高和低-低聚集,高-高聚集分布于研究区西北部区县,低-低聚集分布于研究区东南部区县;(3)1990至2020年各影响因素对首都经济圈生境质量的影响具有明显的时空差异,总体上看,降雨、NDVI、海拔、NP、PD、IJI和SPLIT对首都经济圈生境质量的影响总体上呈正面效应,气温、GDP、人口密度、SHAPE、PARA_MN、PRD和SHDI对首都经济圈生境质量的影响总体上呈负面效应,COHESION对首都经济圈生境质量的影响正负效应相当。研究成果有利于为城市化地区生态保护与经济社会协调发展提供科学依据。

关键词: 生境质量, 生物物理模型, 时空地理加权回归, 首都经济圈

Abstract:

To assess the spatiotemporal dynamics of habitat quality and its drivers in the Capital Economic Zone (CEZ) from 1990 to 2020, we integrated multi-source, heterogeneous remote sensing data and biophysical models to evaluate habitat quality trends. Spatial autocorrelation analysis revealed distinct spatial clustering patterns, while a spatiotemporal geographically weighted regression (GTWR) model quantified the temporally and spatially heterogeneous impacts of natural, socio-economic, and landscape configuration factors. Key results indicate: (1) Habitat quality distribution strongly correlates with land-use types, with forests exhibiting the highest quality and built-up/agricultural lands the lowest. Despite relative spatial stability, the CEZ experienced a 3.51% mean decline in habitat quality, concentrated in rapidly urbanizing Tianjin (-23%) and Langfang (-21%); (2) Habitat quality displayed persistent positive spatial autocorrelation (Moran’s I), with high-high clusters in northwestern districts (ecologically stable zones) and low-low clusters in southeastern districts (urban/agricultural cores), consistent with regional urbanization gradients; (3) Driver impacts diverged spatiotemporally: precipitation, NDVI (vegetation cover), elevation, and landscape connectivity metrics (NP, PD, IJI, SPLIT) enhanced habitat quality, whereas temperature, GDP, population density, and fragmentation indices (SHAPE, PARA_MN, PRD, SHDI) degraded it. Patch cohesion (COHESION) exhibited spatially balanced positive/negative effects. This work provides a mechanistic framework to disentangle urbanization-ecology trade-offs, supporting spatially targeted policies for sustainable development in metropolitan regions.

Key words: habitat quality, biophysical model, GTWR, capital economic zone

中图分类号: