欢迎访问现代地质!

现代地质 ›› 2025, Vol. 39 ›› Issue (03): 541-551.DOI: 10.19657/j.geoscience.1000-8527.2024.077

• 机器学习与矿物学应用 • 上一篇    下一篇

基于深度学习的安徽黄屯铜金矿床黄铜矿定量分析及其意义

唐赧钰1(), 申俊峰1,*(), 陈强2, 卿敏3, 赵永建4, 刘海明5, 董博2, 陈满3, 龚智诚2, 张萌萌1, 林浩1, 王浩阳1   

  1. 1.中国地质大学(北京)地球科学与资源学院成因矿物学研究中心,北京 100083
    2.北京中育神州数据科技有限公司,北京 100043
    3.比优探索(北京)资源勘查有限公司,北京 100010
    4.安徽省金鼎矿业股份有限公司,安徽 合肥 231555
    5.中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室,北京 100037
  • 出版日期:2025-06-10 发布日期:2025-07-03
  • 通信作者: *申俊峰,男,教授,博士生导师,1962年出生,主要从事成因矿物学与找矿矿物学研究工作。Email:shenjf@cugb.edu.cn
  • 作者简介:唐赧钰,男,硕士研究生,2000年出生,主要从事成因矿物学与找矿矿物学研究工作。Email:2001220096@email.cugb.edu.cn
  • 基金资助:
    教育部科技发展中心中国高校产学研创新基金项目(KBB036)

Quantitative Analysis of Chalcopyrite in Huangtun Copper-Gold Deposit in Anhui Province Based on Deep Learning and Its Significance

TANG Nanyu1(), SHEN Junfeng1,*(), CHEN Qiang2, QING Min3, ZHAO Yongjian4, LIU Haiming5, DONG Bo2, CHEN Man3, GONG Zhicheng2, ZHANG Mengmeng1, LIN Hao1, WANG Haoyang1   

  1. 1. Research Center of Genetic Mineralogy, School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2. Beijing Zhongyu Shenzhou Data Technology Co., Ltd., Beijing 100043, China
    3. Biyou Exploration (Beijing) Resources Exploration Co., Ltd., Beijing 100010, China
    4. Anhui Jinding Mining Co., Ltd. Hefei, Anhui 231555, China
    5. Ministry of Natural Resources (MNR) Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences (CAGS), Beijing 100037, China
  • Published:2025-06-10 Online:2025-07-03

摘要:

长期以来,产业链上游或前端(找矿勘查)至中下游或后端(采选冶)始终采用有价元素作为定量指标。然而,由于有价元素赋存矿物的多样性(同一种元素可以赋存于多种矿物相态产出),采用元素定量往往造成产业前端的资源储量评价和后端的资源回收评价出现很大偏差。显然,由于选矿工艺过程主要是回收赋存可回收元素的目标矿物,采用目标矿物含量代替目标元素含量作为定量指标更加合理。基于上述原因,针对可回收目标矿物,采用人工智能图像识别技术,进行目标矿物快速准确的定量方法非常值得深入研究。安徽黄屯铜金矿床属于热液型矿床,其中Cu是主要回收资源之一,黄铜矿是Cu的主要赋存矿物相。选择矿区5条勘探线13个钻孔合计114件样品,采用显微图像深度学习方法,进行了黄铜矿识别与定量。结果显示,基于深度学习的人工智能图像识别技术可以准确识别黄铜矿并进行准确定量,而且黄铜矿矿物定量比Cu元素定量更能反映铜资源的空间变化规律和空间分布特点,对指导深部铜矿或相关矿种(金矿)找矿、矿床勘探、采掘和选别、提高资源综合利用效率均具有重要意义。

关键词: 黄铜矿, 深度学习, 矿物定量, 黄屯铜金矿床

Abstract:

Over the years, quantitative indicators in the upstream (exploration) to downstream (mining, beneficiation, and smelting) phases of the industrial chain have primarily relied on valuable elements. However, due to the diversity of minerals hosting these elements (where a single element can be present in multiple mineral phases), relying solely on elemental quantification often leads to significant discrepancies between resource reserve assessments in the early stages and resource recovery evaluations later on. Evidently, as the beneficiation process aims to recover target minerals containing recoverable elements, it is more reasonable to use the content of target minerals, rather than target elements, as the quantitative indicator. Consequently, for recoverable target minerals, the application of artificial intelligence image recognition technology for rapid and accurate quantification merits further investigation. The Huangtun copper-gold deposit in Anhui, a hydrothermal deposit, has copper (Cu) as one of its primary recoverable resources, with chalcopyrite being the primary mineral phase hosting Cu. Through the use of deep learning methods for microscopic image analysis, chalcopyrite was identified and quantified in 114 samples from 13 boreholes across five exploration lines in the mining area. The results demonstrate that AI image recognition technology based on deep learning can accurately identify and quantify chalcopyrite, providing a more comprehensive understanding of the spatial variation and distribution of copper resources compared to elemental quantification. This has significant implications for guiding exploration, mining, beneficiation, and separation of deep copper deposits or related minerals (such as gold), ultimately enhancing the comprehensive utilization efficiency of resources.

Key words: chalcopyrite, deep learning, mineral quantification, Huangtun copper-gold deposit

中图分类号: