[1] |
Haüy R J. Traité de minéralogie[M]. 1801.
|
[2] |
ARMBRUSTER T, BONAZZI P, AKASAKA M, et al. Recommended nomenclature of epidote-group minerals[J]. European Journal of Mineralogy, 2006, 18(5): 551-567.
|
[3] |
ENAMI M, LIOU J G, MATTINSON C G. Epidote minerals in high P/T metamorphic terranes: Subduction zone and high-to ultrahigh-pressure metamorphism[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 347-398.
|
[4] |
张维峰, 陈华勇, 邓新, 等. 利用绿帘石化学成分及原位Sr同位素指示成矿流体特征:以东天山地区多头山铁铜矿床为例[J]. 地学前缘, 2023, 30(2): 384-400.
DOI
|
[5] |
XIAO B, CHEN H Y, WANG Y F, et al. Chlorite and epidote chemistry of the yandong Cu deposit, NW China: Metallogenic and exploration implications for Paleozoic porphyry Cu systems in the eastern Tianshan[J]. Ore Geology Reviews, 2018, 100: 168-182.
|
[6] |
PACEY A, WILKINSON J J, COOKE D R. Chlorite and epidote mineral chemistry in porphyry ore systems: A case study of the northparkes district, new south Wales, Australia[J]. Economic Geology, 2020, 115(4): 701-727.
|
[7] |
PLOUFFE A, LEE R G, BYRNE K, et al. Tracing detrital epidote derived from alteration halos to porphyry Cu deposits in glaciated terrains: The search for covered mineralization[J]. Economic Geology, 2024, 119(2): 305-329.
|
[8] |
AHMED A D, FISHER L, PEARCE M, et al. A microscale analysis of hydrothermal epidote: Implications for the use of laser ablation-inductively coupled plasma-mass spectrometry mineral chemistry in complex alteration environments[J]. Economic Geology, 2020, 115(4): 793-811.
|
[9] |
HUBER B, BAHLBURG H. The provenance signal of climate-tectonic interactions in the evolving St. Elias orogen: Framework component analysis and pyroxene and epidote single grain geochemistry of sediments from IODP 341 sites U1417 and U1418[J]. International Journal of Earth Sciences, 2021, 110(4): 1477-1499.
|
[10] |
FENG P, WANG L, BROWN M, et al. Partial melting of ultrahigh-pressure eclogite by omphacite-breakdown facilitates exhumation of deeply-subducted crust[J]. Earth and Planetary Science Letters, 2021, 554: 116664.
|
[11] |
RAHIMZADEH B, GHOSOUN Z, MASOUDI F. Identification of Fe3+ content in epidote from Varan, Urumieh-Dokhtar magmatic arc, Iran: using FTIR and Raman spectroscopy[J]. Iranian Journal of Earth Sciences, 2022, 14(2): 131-139.
|
[12] |
QIN F, WU X, WANG Y, et al. High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa[J]. Physics and Chemistry of Minerals, 2016, 43(9): 649-659.
|
[13] |
XU J G, ZHANG D Z, FAN D W, et al. Compressional behavior of natural eclogitic zoisite by synchrotron X-ray single-crystal diffraction to 34 GPa[J]. Physics and Chemistry of Minerals, 2019, 46(4): 333-341.
|
[14] |
LI L, LI C, LI S R. Epidote as a conveyor of water into the Earth’s deep mantle in subduction zones: Insights from coupled high-pressure and high-temperature experiments[J]. American Mineralogist, 2023, 108(1): 120-126.
|
[15] |
HUANG S J, YE Z L, FAN D W, et al. Thermal equation of state for zoisite: Implications for the transportation of water into the upper mantle and the high-velocity anomaly in the Farallon plate[J]. GSA Bulletin, 2023, 5 (5/6): 1178-1186.
|
[16] |
LI B, XU J G, ZHANG D Z, et al. Thermoelasticity and stability of natural epidote at high pressure and high temperature: Implications for water transport during cold slab subduction[J]. Geoscience Frontiers, 2021, 12(2): 921-928.
|
[17] |
INCEL S, MOHRBACH L K, RENNER J. How strong/weak is epidote relative to plagioclase?[J]. Geochemistry, Geophysics, Geosystems, 2024, 25(2): e2023GC011275.
|
[18] |
Chukanov N V, Göttlicher J, Möckel S, et al. Åskagenite-(Nd), Mn2+ NdAl2Fe3+ (Si2O7)(SiO4) O2, a new mineral of the epidote supergroup[J]. New Data on Minerals, 2010, 45: 17-22.
|
[19] |
CHUKANOV N V, VARLAMOV D A, NESTOLA F, et al. Piemontite-Pb, CaPbAl2Mn3+ [Si2O7][SiO4]O(OH), a new mineral species of the epidote supergroup[J]. Neues Jahrbuch Für Mineralogie-Abhandlungen, 2012, 189(3): 275-286.
|
[20] |
MILLS S J, HATERT F, NICKEL E H, et al. The standardisation of mineral group hierarchies: Application to recent nomenclature proposals[J]. European Journal of Mineralogy, 2009, 21(5): 1073-1080.
|
[21] |
BIRD D K, HELGESON H C. Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems; II, Equilibrium constraints in metamorphic/geothermal processes[J]. American Journal of Science, 1981, 281(5): 576-614.
|
[22] |
HOLDAWAY M J. Thermal stability of Al-Fe epidote as a function of fO2 and Fe content[J]. Contributions to Mineralogy and Petrology, 1972, 37(4): 307-340.
|
[23] |
DOLLASE W A. Refinement and comparison of the structures of zoisite and clinozoisite[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(11/12): 1882-1898.
|
[24] |
GOTTARDI G. DATI ed osservazioni sulla struttura dell epidoto[J]. Period Mineral, 1954, 23: 245-250.
|
[25] |
BONAZZI P, MENCHETTI S. Monoclinic members of the epidote group: Effects of the AI ⇌ Fe3+ ⇌ Fe2+ substitution and of the entry of REE3+[J]. Mineralogy and Petrology, 1995, 53(1): 133-153.
|
[26] |
CARBONIN S, MOLIN G. Crystal-chemical considerations on eight metamorphic epidotes[J]. Neues Jahrbuch fur Mineralogie-Abhandlungen, 1980, 139(2): 205-215.
|
[27] |
GIULI G, BONAZZI P, MENCHETTI S. Al-Fe disorder in synthetic epidotes: a single-crystal X-ray diffraction study[J]. American Mineralogist, 1999, 84(5/6): 933-936.
|
[28] |
FRANZ G, LIEBSCHER A. Physical and chemical properties of the epidote minerals-an introduction[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 1-81.
|
[29] |
DELLA VENTURA G, MOTTANA A, PARODI G C, et al. FTIR spectroscopy in the OH-stretching region of monoclinic epidotes from Praborna (St. Marcel, Aosta valley, Italy)[J]. European Journal of Mineralogy, 1996, 8(4): 655-666.
|
[30] |
LANGER K, RAITH M. Infrared spectra of Al-Fe(III)-epidotes and zoisites, Ca2(Al1-p Fe3+p)Al2O(OH) [Si2O7][SiO4][J]. American Mineralogist, 1974, 59: 1249-1258.
|
[31] |
LIEBSCHER A, GOTTSCHALK M, FRANZ G. The substitution Fe3+-Al and the isosymmetric displacive phase transition in synthetic zoisite: A powder X-ray and infrared spectroscopy study[J]. American Mineralogist, 2002, 87(7): 909-921.
|
[32] |
TSANG T, GHOSE S. Electron paramagnetic resonance of V2+, Mn2+, Fe3+, and optical spectra of V3+ in blue zoisite, Ca2Al3Si3O12(OH)[J]. The Journal of Chemical Physics, 1971, 54(3): 856-862.
|
[33] |
WINKLER B, MILMAN V, NOBES R H. A theoretical investigation of the relative stabilities of Fe-free clinozoisite and orthozoisite[J]. Physics and Chemistry of Minerals, 2001, 28(7): 471-474.
|
[34] |
GOTTSCHALK M. Thermodynamic properties of zoisite, clinozoisite and epidote[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 83-124.
|
[35] |
SCHMIDT M W, POLI S. The stability of lawsonite and zoisite at high pressures: Experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere[J]. Earth and Planetary Science Letters, 1994, 124(1/2/3/4): 105-118.
|
[36] |
JAVIER-CCALLATA H, WATANABE S. Crystal field effect on EPR and optical absorption properties of natural green zoisite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 104: 505-511.
|
[37] |
JAJN H A, TELLER E. Stability of polyatomic molecules in degenerate electronic states-I: Orbital degeneracy[J]. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 1937, 161(905): 220-235.
|
[38] |
LANGER K, TILLMANNS E, KERSTEN M, et al. The crystal chemistry of Mn3+ in the clinoand orthozoisite structure types, Ca2M33+ [OH|O|SiO4|Si2O7]: A structural and spectroscopic study of some natural piemontites and “thulites” and their synthetic equivalents[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2002, 217(11): 563-580.
|
[39] |
BONAZZI P, MENCHETTI S, REINECKE T. Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece[J]. American Mineralogist, 1996, 81(5/6): 735-742.
|
[40] |
NAGASHIMA M, ARMBRUSTER T, AKASAKA M, et al. Crystal chemistry of Mn2+-, Sr-rich and REE-bearing piemontite from the Kamisugai mine in the Sambagawa metamorphic belt, Shikoku, Japan[J]. Journal of Mineralogical and Petrological Sciences, 2010, 105(3): 142-150.
|
[41] |
NAGASHIMA M, SANO Y, KOCHI T, et al. Crystal chemistry of Sr-rich piemontite from manganese ore deposit of the Tone mine, Nishisonogi Peninsula, Nagasaki, southwest Japan[J]. Journal of Mineralogical and Petrological Sciences, 2020, 115(5): 391-406.
|
[42] |
KOSTOV-KYTIN V, NIKOLOVA R, GEORGIEVA S, et al. Crystal chemical investigations of epidote group minerals from two Bulgarian localities: Effects of Mn content and Mn/Fe ratio on the structural peculiarities[J]. Geologica Balcanica, 2023, 52(3): 95-109.
|
[43] |
BONAZZI P, MENCHETTI S. Manganese in monoclinic members of the epidote group: Piemontite and related minerals[J]. Reviews in Mineralogy and Geochemistry, 2004, 56(1): 495-552.
|
[44] |
CATTI M, FERRARIS G, IVALDI G. Thermal behavior of the crystal structure of strontian piemontite[J]. American Mineralogist, 1988, 73(11/12): 1370-1376.
|
[45] |
KESKINEN M, LIOU J G. Stability relations of Mn-Fe-Al piemontite[J]. Journal of Metamorphic Geology, 1987, 5(4): 495-507.
|
[46] |
NAGASHIMA M, ARMBRUSTER T, HERWEGH M, et al. Severe structural damage in Cr-and V-rich clinozoisite: Relics of an epidote-group mineral with Ca2Al2Cr3+ Si3O12 (OH) composition?[J]. European Journal of Mineralogy, 2011, 23(5): 731-743.
|
[47] |
NAGASHIMA M, ARMBRUSTER T, NISHIO-HAMANE D, et al. The structural state of Finnish Cr-and V-bearing clinozoisite: Insights from Raman spectroscopy[J]. Physics and Chemistry of Minerals, 2021, 48(1): 5.
|
[48] |
CENKI-TOK B, RAGU A, ARMBRUSTER T, et al. New Mn- and rare-earth-rich epidote-group minerals in metacherts: Manganiandrosite-(Ce) and vanadoandrosite-(Ce)[J]. European Journal of Mineralogy, 2006, 18(5): 569-582.
|
[49] |
NAGASHIMA M, NISHIO-HAMANE D, NAKANO N, et al. Synthesis and crystal chemistry of mukhinite, V-analogue of clinozoisite on the join Ca2Al3Si3O12(OH)-Ca2Al2VSi3O12(OH)[J]. Physics and Chemistry of Minerals, 2019, 46(1): 63-76.
|
[50] |
BELKIN H E, DE VIVO B. Compositional variation and zoning of epidote supergroup minerals in the Campi Flegrei geothermal field, Naples, Italy[J]. European Journal of Mineralogy, 2023, 35(1): 25-44.
|
[51] |
ALTHERR R, HANEL M, SODER C G, et al. Petrology and tectonic significance of epidote blueschist-facies rocks from the northern margin of the pelagonian unit in the republic of north Macedonia[J]. Journal of Petrology, 2023, 64(5): egad023.
|
[52] |
CHEN A P, YANG J J, ZHONG D L, et al. Epidote spherulites and radial euhedral epidote aggregates in a greenschist facies metavolcanic breccia hosting an UHP eclogite in Dabieshan (China): Implication for dynamic metamorphism[J]. American Mineralogist, 2019, 104(8): 1197-1212.
|
[53] |
PEVERELLI V, EWING T, RUBATTO D, et al. U-Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation[J]. Geochronology, 2021, 3(1): 123-147.
|
[54] |
PAL D C, BASAK S, MCFARLANE C, et al. EPMA geochemistry and LA-ICPMS dating of allanite, epidote, monazite, florencite and titanite from the Jaduguda uranium deposit, Singhbhum Shear Zone, eastern India: Implications for REE mineralization vis-à-vis tectonothermal events in the Proterozoic Mobile Belt[J]. Precambrian Research, 2021, 359: 106208.
|
[55] |
BURN M. LA-ICP-QMS Th-U/Pb allanite dating: methods and applications[D]. Philosophisch-naturwissenschfatliche Fakultät der Universität Bern Germany, 2016.
|
[56] |
FOX S, KATZIR Y, BACH W, et al. Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote[J]. Communications Earth & Environment, 2020, 1: 52.
|
[57] |
SU J H, ZHAO X F, LI X C, et al. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals[J]. American Mineralogist, 2021, 106(10): 1545-1558.
|
[58] |
王向伟, 张保涛, 杨浩强, 等. 青海省海晏县团宝山一带变质岩年代学、地球化学及其地质意义[J]. 现代地质, 2023, 37 (3): 586-598.
|