[1] |
ERKAN K, HASAN B. Sediment distribution coefficients (Kd) and bioaccumulation factors (BAF) in biota for natural radionuclides in eastern Black Sea coast of Turkey[J]. Microchemical Journal, 2019, 149:104044.
|
[2] |
CIFFROY P, DURRIEU G, GARNIER J M. Probabilistic distribution coefficients (Kds) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th-implications for uncertainty analysis of models simulating the transport of radionuclides in rivers[J]. Journal of Environmental Radioactivity, 2008, 100(9): 785-794.
|
[3] |
CHEN Z. A case against Kd-based transport models: natural attenuation at a mill tailings site[J]. Computers and Geosciences, 2003, 29(3): 351-359.
|
[4] |
刘花台, 郭占荣, 袁晓婕, 等. 用镭同位素评价海水滞留时间及海底地下水排泄[J]. 地球科学--中国地质大学学报, 2013, 38(3):599-606.
|
[5] |
郭占荣, 黄磊, 袁晓婕, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 122(1):118-125.
|
[6] |
杨英魁, 何炳毅, 孔凡翠, 等. 镭同位素示踪盐湖地下水排放通量--以大柴旦盐湖为例[J]. 地质学报, 2021, 95(7):2238-2248.
|
[7] |
KIRO Y, WEINSTEIN Y, STARINSKY A, et al. Application of radon and radium isotopes to groundwater flow dynamics: An example from the Dead Sea[J]. Chemical Geology, 2015, 411:155-171.
|
[8] |
LUO X, JIAO J, WANG X, et al. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 2017, 546:189-203
|
[9] |
DULAIOVA H, BURNETT C W. Evaluation of the flushing rates of Apalachicola Bay, Florida via natural geochemical tra-cers[J]. Marine Chemistry, 2007, 109(3): 395-408.
|
[10] |
PETERSON N R, BURNETT C W, MAKOTO T, et al. Determination of transport rates in the Yellow River-Bohai Sea mixing zone via natural geochemical tracers[J]. Continental Shelf Research, 2008, 28(19): 2700-2707.
|
[11] |
MORRE S W, JOSELENSE D O. Determination of residence time and mixing processes of the Ubatuba, Brazil, inner shelf waters using natural Ra isotopes[J]. Estuarine, Coastal and Shelf Science, 2007, 76(3): 512-521.
|
[12] |
MORRE S W. Ages of continental shelf waters determined from 223Ra and 224Ra[J]. Journal of Geophysical Research:Oceans, 2000, 105(9): 22117-22122.
|
[13] |
KIRO Y, YECHIELI Y, VOSS I C, et al. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case[J]. Geochimica et Cosmochimica Acta, 2012, 88: 237-254.
|
[14] |
RAM A, MORRE S W. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes[J]. Geochimica et Cosmochimica Acta, 1996, 60: 4645-4652.
|
[15] |
袁晓婕, 郭占荣, 刘洁, 等. 咸水环境下沉积物中镭的解吸特点[J]. 地球学报, 2014, 35(5):582-588.
|
[16] |
BECK J A, COCHRAN A M. Controls on solid-solution partitioning of radium in saturated marine sands[J]. Marine Chemistry, 2013, 156: 38-48.
|
[17] |
VANDENHOVE H, VAN H M, WOUTERS K, et al. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration[J]. Environmental Pollution, 2007, 145(2): 587-595.
|
[18] |
RODRIGUEZ B P, LOZANO C J, TOME V, et al. Influence of soil conditions on the distribution coefficients of 226Ra in natural soils[J]. Chemosphere, 2018, 205: 188-193.
|
[19] |
WEAVER T R, BAHR J. Geochemical evolution in the Cam-brian-Ordovician sandstone aquifer, eastern Wisconsin: 1. Major ion and radionuclide distribution[J]. Groundwater, 1991, 29(3): 350-356.
|
[20] |
GONNEEA E M, MORRIS J P, DULAIOVA H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2007, 109(3): 250-267.
|
[21] |
CABLE E J, SMITH G C, BLANFIRD J W. Dispersivity and distribution coefficients in marine sediments using 3H and 226Ra[J]. Radioprotection, 2009, 44(5): 185-190.
|
[22] |
LIU Y, JIAO J J, MAO R, et al. Spatial characteristics reveal the reactive transport of radium isotopes (224Ra, 223Ra, and 228Ra) in an intertidal aquifer[J]. Water Resources Research, 2019, 55(12): 10282-10302.
|
[23] |
谷河泉, 赵峰, 季韬, 等. 盐度对镭同位素在海南红树林沉积物解吸行为的影响[J]. 海洋与湖沼, 2015, 46(1):65-76.
|
[24] |
LI Y H, MATHIEU G, BISCAYE P, et al. The flux of 226Ra from estuarine and continental shelf sediments[J]. Earth and Planetary Science Letters, 1977, 37(2): 237-241.
|
[25] |
WHITEHOUSE G U, JEFFREY M L, DEBBRECHT D J. Differential settling tendencies of clay minerals in saline waters[J]. Clays and Clay Minerals, 1958, 7(1): 1-79.
|
[26] |
LAURIA C D, GODOY M J. Abnormal high natural radium concentration in surface waters[J]. Journal of Environmental Radioactivity, 2002, 61(2): 159-168.
|
[27] |
TACHI Y, SHIBUTANI T, SATI H, et al. Experimental and modeling studies on sorption and diffusion of radium in bentonite[J]. Journal of Contaminant Hydrology, 2001, 47(2): 171-186.
|
[28] |
URSO L, HORMANN V, DIENER A, et al. Modelling partition coefficients of radium in soils[J]. Applied Geochemistry, 2019, 105: 78-86.
|
[29] |
CHARETTE A M, SHOLKVITZ R E. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29(10):1444.
|
[30] |
SPITERI C, REGNIER P, SLOMP P C, et al. pH-dependent iron oxide precipitation in a subterranean estuary[J]. Journal of Geochemical Exploration, 2005, 88(1): 399-403.
|
[31] |
MORRE S W, REID F D. Extraction of radium from natural waters using manganese-impregnated acrylic fibers[J]. Journal of Geophysical Research, 1973, 78: 8880-8886.
|
[32] |
NATHWANI J S, PHILLIPS C R. Adsorption of 226Ra by soils in the presence of Ca2+ ions: Specific adsorption (II)[J]. Pergamon, 1979, 8(5): 293-299.
|
[33] |
VANDENHOVE H, GIL-GARCíA C, RIGOL A, et al. New best estimates for radionuclide solid-liquid distribution coefficients in soils: Part 2. Naturally occurring radionuclides[J]. Journal of Environmental Radioactivity, 2009, 100(9): 697-703.
|
[34] |
BRIGANTI A, VOLTAGGIO M, TUCCIMEI P, et al. Radium in groundwater hosted in porous aquifers: estimation of retardation factor and recoil rate constant by using NAPLs[J]. SN Applied Sciences, 2020, 2(11):1934.
|
[35] |
SUN Y, TORGERSEN T. Adsorption-desorption reactions and bioturbation transport of 224Ra in marine sediments: a one-dimensional model with applications[J]. Marine Chemistry, 2001, 74(4): 227-243.
|
[36] |
KREST M J, HARVEY W J. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge[J]. Limnology and Oceanography, 2003, 48(1): 290-298.
|
[37] |
COLBERT L S, HAMMOND E D. Shoreline and seafloor fluxes of water and short-lived Ra isotopes to surface water of San Pedro Bay, CA[J]. Marine Chemistry, 2008, 108(1): 1-17.
|
[38] |
LI Y H, CHAN L H. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary[J]. Earth and Planetary Science Letters, 1979, 43(3): 343-350.
|
[39] |
KUMAR S, KAR S A, RAWAT N, et al. Distribution coefficients of radionuclides around uranium mining area and effect of different analytical parameters on their determination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304(2): 727-733.
|
[40] |
WEBSTER T I, HANCOCK J G, MURRAY S A. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2469-2476.
|
[41] |
KRISHNASWAMI S, GRAUSTEIN C W, TUREKIAN K K, et al. Radium, thorium and radioactive lead isotopes in groundwaters: Application to the in situ determination of adsorption-desorption rate constants and retardation factors[J]. Water Resources Research, 1982, 18(6): 1663-1675.
|
[42] |
STYRCHIO C N, BANNER L J, BINZ M C, et al. Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA[J]. Applied Geochemistry, 2001, 16(1): 109-122.
|
[43] |
STACKELBERG E P, SZABO Z, JURGRNS C B. Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA[J]. Applied Geochemistry, 2018, 89: 34-48.
|
[44] |
MOISE T, STARINSKY A, KATZ A, et al. Ra isotopes and Rn in brines and ground waters of the Jordan-Dead Sea Rift Valley: enrichment, retardation, and mixing[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2371-2388.
|
[45] |
LUO S, KU T, ROBACK R, et al. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): decay-series disequilibrium studies[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 867-881.
|
[46] |
HORMANN V, FISCHER W H. Estimating the distribution of radionuclides in agricultural soils-Dependence on soil parameters[J]. Journal of Environmental Radioactivity, 2013, 124: 278-286.
|
[47] |
谷河泉, 杜金洲, 吴梅桂, 等. 镭延迟符合计数器(RaDeCC)测量海水中的224Ra和223Ra[J]. 海洋环境科学, 2015, 34(4): 570-577.
|
[48] |
MORRE S W, ARNOLD R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research: Oceans, 1996, 101:1321-1329.
|
[49] |
ELSINGER J R, MOORE S W. 226Ra and 228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay Estuaries[J]. Estuarine, Coastal and Shelf Science, 1984, 18(6): 601-613.
|
[50] |
孔凡翠, 沙占江, 杜金洲, 等. 青海湖西岸镭同位素的解吸和扩散特征[J]. 湖泊科学, 2016, 28(5):1103-1114.
|
[51] |
罗浩, 李林蔚, 王锦龙, 等. 钦州湾河流沉积物中镭的解吸行为[J]. 海洋学报, 2019, 41(4):27-41.
|
[52] |
林鸿溢, 李映雪. 分形论:奇异的探索[M]. 北京: 北京理工大学出版社, 1992.
|
[53] |
DRUILLENNEC L T, IELSCH G, BOUR O, et al. Hydrogeological and geochemical control of the variations of 222Rn concentrations in a hard rock aquifer: Insights into the possible role of fracture-matrix exchanges[J]. Applied Geochemistry, 2009, 25(3): 345-356.
|
[54] |
SUKANYA S, NOBLE J, JOSEPH S. Factors controlling the distribution of radon (222Rn) in groundwater of a tropical mountainous river basin in southwest India[J]. Chemosphere, 2021, 263: 1-14.
|
[55] |
SANTOS O T, BONOTTO M D. 222Rn, 226 Ra and hydroche-mistry in the Bauru Aquifer System, São José do Rio Preto (SP), Brazil[J]. Applied Radiation and Isotopes, 2014, 86: 109-117.
|
[56] |
PAYNE E T, BRENDLER V, OCHS M, et al. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal[J]. Environmental Modelling and Software, 2013, 42: 143-156.
|
[57] |
SAJIH M, BRYAN D N, LIVENS R F, et al. Adsorption of radium and barium on goethite and ferrihydrite: A kinetic and surface complexation modelling study[J]. Geochimica et Cosmochimica Acta, 2014, 146: 150-163.
|
[58] |
DONALD L, ARTHUR R C. The thermodynamic properties of radium[J]. Pergamon, 1985, 49(7): 1593-1601.
|
[59] |
DACIDSON R M, DICKSON L B. A porous flow model for steady state transport of radium in groundwater[J]. Water Resources Research, 1986, 22(1): 34-44.
|
[60] |
TRICCA A, PORCELLI D, WASSERBURG J G. Factors controlling the groundwater transport of U, Th, Ra, and Rn[J]. Journal of Earth System Science, 2000, 109(1): 95-108.
|
[61] |
TRICCA A, WASSERBURG J G, PORCELLI D, et al. The transport of U-and Th-series nuclides in a sandy unconfined aquifer[J]. Geochimica et Cosmochimica Acta, 2001, 65(8): 1187-1210.
|
[62] |
BECK J A, RAPAGLIA P J, COCHRAN K J, et al. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3): 419-441.
|
[63] |
MORRE S W. Radium isotopes in the Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 1981, 12(6): 713-723.
|