现代地质 ›› 2023, Vol. 37 ›› Issue (02): 433-442.DOI: 10.19657/j.geoscience.1000-8527.2021.051
收稿日期:
2020-10-29
修回日期:
2021-11-20
出版日期:
2023-04-10
发布日期:
2023-05-23
通讯作者:
蒋幸福
作者简介:
蒋幸福,男,博士,讲师,1986年出生,构造地质学专业,主要从事前寒武纪大地构造学研究。Email:jiangxingfu229@163.com。基金资助:
WANG Qing1(), JIANG Xingfu2,3(
)
Received:
2020-10-29
Revised:
2021-11-20
Online:
2023-04-10
Published:
2023-05-23
Contact:
JIANG Xingfu
摘要:
扬子地块黄陵背斜南部出露的花岗闪长质片麻岩是太古宙TTG片麻岩的重要组成单元,具有高Al2O3、Na2O、Sr以及低Rb、Nb等特征,属于高铝TTG系列,且具埃达克质岩石属性。结合片麻岩微量元素蛛网图显示的Nb、Ta和Hf等高场强元素富集以及Th、Pb和U等大离子亲石元素亏损的特征,本文认为该岩石形成于俯冲环境下玄武质洋壳的部分熔融作用。黄陵背斜北部出露的2.9~3.0 Ga TTG片麻岩和弧性质角闪岩,反映该时期是扬子地块陆壳生长的一次重要阶段,且以洋壳俯冲产生岛弧或安第斯型岩浆作用的陆壳水平增生为主,通过微陆块拼贴或规模较小的板块构造模式而形成。
中图分类号:
王庆, 蒋幸福. 扬子地块中太古宙地壳增生:来自黄陵背斜南部地区花岗闪长质片麻岩的证据[J]. 现代地质, 2023, 37(02): 433-442.
WANG Qing, JIANG Xingfu. Mesoarchean Crustal Accretion of the Yangtze Block: Evidence from the Granodioritic Gneiss in the Southern Huangling Anticline[J]. Geoscience, 2023, 37(02): 433-442.
图1 扬子克拉通前寒武纪构造简图((a), 据文献[18] 修编)和黄陵背斜南部地质构造略图((b), 据文献[20]修编)
Fig.1 Precambrian tectonic map of the Yangtze craton ((a), modified from reference [18]) and geological map of the Huangling anticline ((b), modified from reference [20])
样品名称 | SiO2 | TiO2 | Al2O3 | Fe2 | MnO | MgO | CaO | Na2O | K2O | P2O5 | 烧失量 | 总量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17MY-05 | 69.35 | 0.19 | 17.28 | 1.97 | 0.05 | 0.62 | 2.32 | 5.82 | 1.54 | 0.09 | 0.7 | 99.93 |
17MY-06 | 62.82 | 0.83 | 14.81 | 6.97 | 0.12 | 2.87 | 5.69 | 4.08 | 0.84 | 0.15 | 0.81 | 99.99 |
17MY-07 | 69.87 | 0.26 | 15.95 | 1.98 | 0.02 | 0.71 | 2.47 | 5.46 | 1.79 | 0.26 | 0.56 | 99.33 |
17MY-08 | 72.87 | 0.15 | 15.20 | 1.44 | 0.04 | 0.60 | 2.73 | 5.44 | 0.68 | 0.04 | 0.65 | 99.83 |
17MY-09 | 72.36 | 0.09 | 15.82 | 1.10 | 0.05 | 0.39 | 2.22 | 6.19 | 0.70 | 0.04 | 0.83 | 99.77 |
17MY-11 | 72.62 | 0.25 | 14.91 | 2.25 | 0.02 | 0.74 | 2.48 | 4.91 | 1.23 | 0.13 | 0.74 | 100.3 |
17MY-16 | 63.08 | 1.33 | 13.71 | 6.90 | 0.12 | 1.40 | 3.99 | 2.55 | 4.62 | 0.44 | 0.9 | 99.04 |
样品名称 | Be | Sc | V | Cr | Co | Cu | Zn | Ga | Rb | Sr | Y | Zr |
17MY-05 | 1.67 | 2.04 | 15.11 | 43.00 | 3.63 | 6.78 | 28.29 | 20.42 | 33.10 | 822 | 5.26 | 183 |
17MY-06 | 1.09 | 17.59 | 156.5 | 51.58 | 22.67 | 78.30 | 52.41 | 18.24 | 28.22 | 441 | 15.90 | 115 |
17MY-07 | 1.55 | 3.26 | 17.46 | 5.31 | 60.25 | 22.13 | 27.17 | 20.78 | 43.20 | 735 | 15.17 | 838 |
17MY-08 | 1.04 | 1.92 | 11.84 | 57.53 | 3.83 | 3.10 | 12.53 | 17.03 | 19.28 | 760 | 2.98 | 180 |
17MY-09 | 1.27 | 2.18 | 6.74 | 53.20 | 2.47 | 12.57 | 10.64 | 17.26 | 27.31 | 508 | 3.10 | 184 |
17MY-11 | 1.49 | 2.65 | 19.56 | 9.66 | 83.43 | 30.94 | 33.55 | 18.28 | 33.26 | 706 | 8.74 | 146 |
17MY-16 | 3.17 | 14.59 | 94.53 | 56.45 | 13.71 | 24.11 | 82.33 | 22.43 | 152.8 | 241 | 70.49 | 493 |
样品名称 | Nb | Cs | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy |
17MY-05 | 2.38 | 0.67 | 896 | 55.91 | 102 | 8.89 | 28.45 | 3.60 | 1.30 | 2.42 | 0.25 | 1.19 |
17MY-06 | 8.05 | 0.92 | 373 | 17.92 | 33 | 3.89 | 14.85 | 3.05 | 1.25 | 3.07 | 0.44 | 2.83 |
17MY-07 | 2.99 | 0.86 | 1420 | 148.2 | 249 | 24.3 | 78.51 | 10.11 | 2.09 | 6.76 | 0.65 | 2.99 |
17MY-08 | 1.46 | 0.84 | 549 | 52.85 | 78 | 7.37 | 23.10 | 2.72 | 1.09 | 1.60 | 0.15 | 0.69 |
17MY-09 | 0.90 | 0.64 | 331 | 81.23 | 125 | 11.42 | 35.91 | 3.78 | 1.25 | 2.23 | 0.17 | 0.72 |
17MY-11 | 4.08 | 1.45 | 660 | 51.56 | 84 | 8.15 | 26.31 | 3.71 | 1.31 | 2.69 | 0.32 | 1.67 |
17MY-16 | 31.02 | 1.55 | 1235 | 137.4 | 266 | 33.0 | 113.0 | 19.81 | 3.00 | 15.68 | 2.18 | 12.49 |
样品名称 | Ho | Er | Tm | Yb | Lu | Hf | Ta | Ti | Pb | Th | ||
17MY-05 | 0.19 | 0.65 | 0.07 | 0.45 | 0.08 | 4.41 | 0.08 | 0.28 | 12.70 | 12.05 | ||
17MY-06 | 0.56 | 1.57 | 0.24 | 1.57 | 0.28 | 2.93 | 0.49 | 0.22 | 7.06 | 2.78 | ||
17MY-07 | 0.54 | 1.90 | 0.23 | 1.61 | 0.29 | 20.62 | 0.58 | 0.32 | 14.63 | 20.44 | ||
17MY-08 | 0.10 | 0.39 | 0.04 | 0.27 | 0.05 | 4.30 | 0.06 | 0.19 | 9.15 | 8.31 | ||
17MY-09 | 0.11 | 0.47 | 0.04 | 0.34 | 0.06 | 4.37 | 0.04 | 0.25 | 14.25 | 13.01 | ||
17MY-11 | 0.29 | 0.93 | 0.12 | 0.73 | 0.12 | 3.52 | 1.00 | 0.28 | 12.98 | 7.32 | ||
17MY-16 | 2.34 | 6.71 | 0.92 | 6.10 | 0.93 | 12.33 | 1.81 | 0.79 | 25.21 | 40.39 |
表1 扬子克拉通黄陵背斜南部花岗闪长质片麻岩主量(%)、微量和稀土元素(10-6)分析结果
Table 1 Analytical results of major elments (%), trace elements (10-6), and rare-earth elements (10-6) of the granodioritic gneiss from the southern Huangling anticline, Yangtze craton
样品名称 | SiO2 | TiO2 | Al2O3 | Fe2 | MnO | MgO | CaO | Na2O | K2O | P2O5 | 烧失量 | 总量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17MY-05 | 69.35 | 0.19 | 17.28 | 1.97 | 0.05 | 0.62 | 2.32 | 5.82 | 1.54 | 0.09 | 0.7 | 99.93 |
17MY-06 | 62.82 | 0.83 | 14.81 | 6.97 | 0.12 | 2.87 | 5.69 | 4.08 | 0.84 | 0.15 | 0.81 | 99.99 |
17MY-07 | 69.87 | 0.26 | 15.95 | 1.98 | 0.02 | 0.71 | 2.47 | 5.46 | 1.79 | 0.26 | 0.56 | 99.33 |
17MY-08 | 72.87 | 0.15 | 15.20 | 1.44 | 0.04 | 0.60 | 2.73 | 5.44 | 0.68 | 0.04 | 0.65 | 99.83 |
17MY-09 | 72.36 | 0.09 | 15.82 | 1.10 | 0.05 | 0.39 | 2.22 | 6.19 | 0.70 | 0.04 | 0.83 | 99.77 |
17MY-11 | 72.62 | 0.25 | 14.91 | 2.25 | 0.02 | 0.74 | 2.48 | 4.91 | 1.23 | 0.13 | 0.74 | 100.3 |
17MY-16 | 63.08 | 1.33 | 13.71 | 6.90 | 0.12 | 1.40 | 3.99 | 2.55 | 4.62 | 0.44 | 0.9 | 99.04 |
样品名称 | Be | Sc | V | Cr | Co | Cu | Zn | Ga | Rb | Sr | Y | Zr |
17MY-05 | 1.67 | 2.04 | 15.11 | 43.00 | 3.63 | 6.78 | 28.29 | 20.42 | 33.10 | 822 | 5.26 | 183 |
17MY-06 | 1.09 | 17.59 | 156.5 | 51.58 | 22.67 | 78.30 | 52.41 | 18.24 | 28.22 | 441 | 15.90 | 115 |
17MY-07 | 1.55 | 3.26 | 17.46 | 5.31 | 60.25 | 22.13 | 27.17 | 20.78 | 43.20 | 735 | 15.17 | 838 |
17MY-08 | 1.04 | 1.92 | 11.84 | 57.53 | 3.83 | 3.10 | 12.53 | 17.03 | 19.28 | 760 | 2.98 | 180 |
17MY-09 | 1.27 | 2.18 | 6.74 | 53.20 | 2.47 | 12.57 | 10.64 | 17.26 | 27.31 | 508 | 3.10 | 184 |
17MY-11 | 1.49 | 2.65 | 19.56 | 9.66 | 83.43 | 30.94 | 33.55 | 18.28 | 33.26 | 706 | 8.74 | 146 |
17MY-16 | 3.17 | 14.59 | 94.53 | 56.45 | 13.71 | 24.11 | 82.33 | 22.43 | 152.8 | 241 | 70.49 | 493 |
样品名称 | Nb | Cs | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy |
17MY-05 | 2.38 | 0.67 | 896 | 55.91 | 102 | 8.89 | 28.45 | 3.60 | 1.30 | 2.42 | 0.25 | 1.19 |
17MY-06 | 8.05 | 0.92 | 373 | 17.92 | 33 | 3.89 | 14.85 | 3.05 | 1.25 | 3.07 | 0.44 | 2.83 |
17MY-07 | 2.99 | 0.86 | 1420 | 148.2 | 249 | 24.3 | 78.51 | 10.11 | 2.09 | 6.76 | 0.65 | 2.99 |
17MY-08 | 1.46 | 0.84 | 549 | 52.85 | 78 | 7.37 | 23.10 | 2.72 | 1.09 | 1.60 | 0.15 | 0.69 |
17MY-09 | 0.90 | 0.64 | 331 | 81.23 | 125 | 11.42 | 35.91 | 3.78 | 1.25 | 2.23 | 0.17 | 0.72 |
17MY-11 | 4.08 | 1.45 | 660 | 51.56 | 84 | 8.15 | 26.31 | 3.71 | 1.31 | 2.69 | 0.32 | 1.67 |
17MY-16 | 31.02 | 1.55 | 1235 | 137.4 | 266 | 33.0 | 113.0 | 19.81 | 3.00 | 15.68 | 2.18 | 12.49 |
样品名称 | Ho | Er | Tm | Yb | Lu | Hf | Ta | Ti | Pb | Th | ||
17MY-05 | 0.19 | 0.65 | 0.07 | 0.45 | 0.08 | 4.41 | 0.08 | 0.28 | 12.70 | 12.05 | ||
17MY-06 | 0.56 | 1.57 | 0.24 | 1.57 | 0.28 | 2.93 | 0.49 | 0.22 | 7.06 | 2.78 | ||
17MY-07 | 0.54 | 1.90 | 0.23 | 1.61 | 0.29 | 20.62 | 0.58 | 0.32 | 14.63 | 20.44 | ||
17MY-08 | 0.10 | 0.39 | 0.04 | 0.27 | 0.05 | 4.30 | 0.06 | 0.19 | 9.15 | 8.31 | ||
17MY-09 | 0.11 | 0.47 | 0.04 | 0.34 | 0.06 | 4.37 | 0.04 | 0.25 | 14.25 | 13.01 | ||
17MY-11 | 0.29 | 0.93 | 0.12 | 0.73 | 0.12 | 3.52 | 1.00 | 0.28 | 12.98 | 7.32 | ||
17MY-16 | 2.34 | 6.71 | 0.92 | 6.10 | 0.93 | 12.33 | 1.81 | 0.79 | 25.21 | 40.39 |
图3 花岗闪长质片麻岩TAS 分类命名图[25](a)和A/NK-A/CNK 图(b)
Fig.3 TAS classification[25](a) and A/NK vs. A/CNK (b) diagrams for the granodioritic gneiss in the southern Huangling anticline
图4 黄陵背斜南部花岗闪长质片麻岩稀土元素配分模式(a)和微量元素蛛网图(b)(球粒陨石和原始地幔数据据文献[26])
Fig.4 Chondrite-normalized REE distribution diagram (a) and primitive mantle-normalized trace element diagram (b) for the granodioritic gneiss in the southern Huangling anticline(normalized values from reference [26])
图5 黄陵背斜地区TTG片麻岩Al2O3-SiO2(a)和LaN/YbN-YbN(b)图解[30](黄陵背斜南部TTG样品数据来源于文献[7],黄陵背斜北部TTG样品数据来源于文献[5,7])
Fig.5 Al2O3-SiO2 diagram (a) and LaN/YbN-YbN (b) diagram[30]for the granodioritic gneiss in the southern Huangling anticline (Data of TTG gneissic samples of Huangling anticline are from references [5,7])
[1] |
MOYEN J F, MARTIN H. Forty years of TTG research[J]. Lithos, 2012, 148:312-336.
DOI URL |
[2] | 张旗, 翟明国. 太古宙TTG 岩石是什么含义?[J]. 岩石学报, 2012, 28(11):3446-3456. |
[3] |
CONDIE K C. TTGs and adakites:Are they both slab melts?[J]. Lithos, 2005, 80(1/4):33-44.
DOI URL |
[4] |
GAO S, LING W L, QIU Y M, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:evidence for cratonic evolution and redistribution of REE during crustal anataxis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14):2071-2088.
DOI URL |
[5] |
GUO J L, GAO S, WU Y B, et al. 3.45 Ga granitic gneisses from the Yangtze craton,South China:Implications for Early Archean crustal growth[J]. Precambrian Research, 2014, 242:82-95.
DOI URL |
[6] |
CHEN K, GAO S, WU Y B, et al. 2.6-2.7Ga crustal growth in Yangtze craton,South China[J]. Precambrian Research, 2013, 224:472-490.
DOI URL |
[7] |
GAO S, YANG J, ZHOU L, et al. Age and growth of the Archean Kongling terrane,South China,with emphasis on 3.3 Ga granitoid gneisses[J]. American Journal of Science, 2011, 311:153-182.
DOI URL |
[8] |
GUO J L, WU Y B, GAO S, et al. Episodic Paleoarchean-Paleoproterozoic (3.3-2.2 Ga) granitoid magmatism in Yangtze craton,South China:Implications for Late Archean tectonics[J]. Precambrian Research, 2015, 270: 246-266.
DOI URL |
[9] | WANG Z J, WANG J, DU Q D, et al. The evolution of the central Yangtze block during Early Neoarchean time: Evidence from geochronology and geochemistry[J]. Journal of Asian Earth Science, 2013, 7(15):31-44. |
[10] |
WANG Z J, WANG J, DU Q D, et al. Mature Archean continental,geochronology and geochemistry[J]. Chinese Science Bulletin, 2013, 58(19):2360-2369.
DOI URL |
[11] |
WU Y B, ZHENG Y F, GAO S, et al. Zircon U-Pb age and trace evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen[J]. Lithos, 2008, 101(3/4): 308-322.
DOI URL |
[12] |
HUI B, DONG Y P, ZHANG F F, et al. Geochronology and geochemistry of ca. 2.48 Ga granitoid gneisses from the Yudongzi Complex in the north-western Yangtze Block,China[J]. Geological Journal, 2019, 54(2): 879-896.
DOI URL |
[13] |
ZHOU G Y, WU Y B, LI L, et al. Identification of ca.2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 2018, 314:240-263.
DOI URL |
[14] | WU Y B, GAO S, ZHANG H F, et al. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 2012,200-203:26-37. |
[15] |
HU J, LIU X C, CHEN L Y, et al. A -2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 2013, 58(28/29):3564-3579.
DOI URL |
[16] | 何良伦, 刘雨, 杨坤光, 等. 黔西赫章2.5 Ga 石英二长闪长岩的发现及其地质意义[J]. 地质科技通报, 2020, 39(6):30-42. |
[17] |
DENG H, PENG S B, POLAT A, et al. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan Ophiolite,Yangtze Craton:Evidence for evolving tectonic settings[J]. Precambrian Research, 2017, 289:75-94.
DOI URL |
[18] |
PENG S B, KUSKY T M, JIANG X F, et al. Geology,geochemistry,and geochronology of the Miaowan ophiolite,Yangtze craton:Implications for South China’s amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21:577-594.
DOI URL |
[19] | 马大铨, 李志昌, 肖志发. 鄂西崆岭杂岩的组成、时代及地质演化[J]. 地球学报, 1997, 18(3):10-18. |
[20] |
WEI Y X, PENG S B, JIANG X F, et al. SHRIMP zircon U-Pb ages and geochemical characteristics of the Neoproterozoic granitoids in the Huangling anticline and its tectonic setting[J]. Journal of Earth Science, 2012, 23(5):659-676.
DOI URL |
[21] | 马大铨, 杜绍华, 肖志发. 黄陵花岗岩基的成因[J]. 岩石矿物学杂志, 2002, 21(2):151-161. |
[22] | 蒋幸福, 彭松柏, 韩庆森. 扬子克拉通黄陵背斜南部-860Ma岩墙的成因及地质意义[J]. 地球科学, 2021, 46(6):2117-2132. |
[23] | 熊成云, 韦昌山, 金光富, 等. 鄂西黄陵背斜地区前南华纪古构造格架及主要地质事件[J]. 地质力学学报, 2004(2):97-112. |
[24] |
LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[25] |
MIDDLEMOST E. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224.
DOI URL |
[26] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society,London,Special Publications, 1989, 42:313-345.
DOI URL |
[27] |
JIANG X F, HONG Z L, DENG H, et al. Ca 2.85 Ga Nb-enriched mafic dikes from the southern Huangling dome of the Yangtze Block, southern China: Implications for Mesoarchean subduction zone processes[J]. Geological Journal, 2021, 56(5): 2583-2601.
DOI URL |
[28] | BARKER F, ARTH J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 10(4): 596-600. |
[29] | 杨帆, 陈岳龙, 于洋. 鲁西地区新太古代晚期正长-二长花岗岩成因及地质意义[J]. 现代地质, 2022, 36(4):1155-1172. |
[30] |
HALLA J, HUNEN J V, HEILIMO E, et al. Geochemical and numerical constraints on Neoarchean plate tectonics[J]. Precambrian Research, 2009, 174:155-162.
DOI URL |
[31] | 邓晋福, 罗照华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004:94-99. |
[32] |
MARTIN H, SMITHIES R H. An overview of adakite,tonalite-trondhjemite-granodiorite (TTG) and sanukitoid: relationships and some implication for crustal evolution[J]. Lithos, 2005, 79:1-24.
DOI URL |
[33] |
DRUMMOND M S, DEFANT M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons[J]. Journal of Geophysical Research, 1990, 95:21503-21521.
DOI URL |
[34] |
DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665.
DOI |
[35] |
ATHERTON M P, PEFORD N. Generation of sodium-rich magmas from newly under-plated basaltic crust[J]. Nature, 1993, 362:144-146.
DOI |
[36] |
PEACOCK S M, RUSHMER T, THOMPSON A B. Partial mel-ting of subducting oceanic crust[J]. Earth and Planetary Science Letters, 1994, 121:227-244.
DOI URL |
[37] | 朱弟成, 段丽萍, 廖忠礼, 等. 两类埃达克岩(Adakite)的判别[J]. 矿物岩石, 2002, 22(3):5-9. |
[38] |
MARTIN H. Petrogenesis of Archean trondhjemites,tonalities and granodiorites from eastern Finland:Major and trace element geochemistry[J]. Journal of Petrology, 1987, 28:921-953.
DOI URL |
[39] |
LI L M, LIN S F, DAVIS D W, et al. Geochronology and geochemistry of igneous rocks from the Kongling terrane: Implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yang-tze Block[J]. Precambrian Research, 2014, 255:30-47.
DOI URL |
[40] | GUO J L, WU Y B, GAO S, et al. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga)granitoid magmatism in Yangtze Cration, South China: implications for Late Archean tectonics[J]. Precamlrian Research, 2015, 270:246-266. |
[41] |
JAHN B M, LIU D Y, WAN Y S, et al. Archean crustal evolution of the Jiaodong Peninsula,China,as revealed by zircon SHRIMP geochronology,elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308(3) : 232-269.
DOI URL |
[42] | TANG J, ZHENG Y F, WU Y B, et al. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane:Constraints on its tectonic affinity in the Sulu orogen[J]. Precambr-ian Research, 2007, 152(1/2):48-82. |
[43] | 王惠初, 康健丽, 任云伟, 等. 华北克拉通-2.7 Ga 的BIF:来自莱州—昌邑地区含铁建造的年代学证据[J]. 岩石学报, 2015, 31(10):2991-3011. |
[44] |
ZHENG J P, GRIFFIN W L, O’REILLY S Y, et al. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 2006, 34:417-420.
DOI URL |
[45] |
ZHANG S B, ZHENG Y F, WU Y B, et al. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006, 146:16-34.
DOI URL |
[46] |
CONDIE K C, BICKFORD M E, ASTER R C, et al. Episodic zircon ages,Hf isotopic composition,and the preservation rate of continental crust[J]. Geological Society of America Bulletin, 2011, 123:951-957.
DOI URL |
[1] | 宋志冬, 颜丹平. 扬子地块东缘新元古代造山后构造转化:瓮安穹隆构造岩石与年代学限定[J]. 现代地质, 2019, 33(05): 937-956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||