Geoscience ›› 2025, Vol. 39 ›› Issue (03): 523-540.DOI: 10.19657/j.geoscience.1000-8527.2025.001
• Machine Learning and Its Applications in Mineralogy • Previous Articles Next Articles
SUN Yujie(), LI Xiaoyan, ZHANG Chao*(
)
Online:
2025-06-10
Published:
2025-07-03
Contact:
ZHANG Chao
CLC Number:
SUN Yujie, LI Xiaoyan, ZHANG Chao. Machine-learning Based Discrimination of Granite Type Using Biotite Composition[J]. Geoscience, 2025, 39(03): 523-540.
Fig.7 Distribution diagram showing the content of F and Cl in biotite from I-type,S-type,and A-type granites (a)and a frequency distribution diagram of l o g ( f H 2 O / f H C l ) for I-type,S-type,and A-type granites (b)
[1] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[2] | CHAPPELL B, WHITE A J. Two contrasting granite types[J]. Pac Geol, 1974, 8: 173-174. |
[3] | LOISELLE M C, WONES D R. Characteristics and origin of anorogenic granites[M]. Geological society of America, 1979, 11: 468. |
[4] | WHITE A J R. Sources of granite magmas[M]. Geological Society of America. 1979, 11: 539. |
[5] | BARBARIN B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting[J]. Geological Journal, 1990, 25(3/4): 227-238. |
[6] | ISHIHARA S. The magnetite-series and ilmenite-series granitic rocks[J]. MiningGeology, 1977, 27(145): 293-305. |
[7] | ISHIHARA K, YAMAZAKI A. Analysis of wave-induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85-100. |
[8] |
张旗, 翟明国, 魏春景, 等. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 2022, 29(4): 319-329.
DOI |
[9] | CHAPPELL B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. |
[10] | GAO P, ZHENG Y F, ZHAO Z F. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry[J]. Lithos, 2016, 258: 77-91. |
[11] | 莫静, 夏小平, 徐健. 锆石中的水:S型和I型花岗岩的新判别标志[C]// 广州: 中国地球科学联合学术年会, 2021. |
[12] | ZHONG S H, LIU Y, LI S Z, et al. A machine learning method for distinguishing detrital zircon provenance[J]. Contributions to Mineralogy and Petrology, 2023, 178: 35. |
[13] | GION A M, PICCOLI P M, CANDELA P A. Characterization of biotite and amphibole compositions in granites[J]. Contributions to Mineralogy and Petrology, 2022, 177(4): 43. |
[14] | LI X Y, ZHANG C. Machine learning thermobarometry for biotite-bearing magmas[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024137. |
[15] | HENRY D J, DAIGLE N M. Chlorine incorporation into amphibole and biotite in high-grade iron-formations: Interplay between crystallography and metamorphic fluids[J]. American Mineralogist, 2018, 103(1): 55-68. |
[16] | UCHIDA E, ENDO S, MAKINO M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Resource Geology, 2007, 57(1): 47-56. |
[17] | WONES D. Significance of the assemblage titanite+magnetite+quartz in granitic rocks[J]. American Mineralogist, 1989, 74: 744-749. |
[18] | MUNOZ J L, LUDINGTON S D. Fluoride-hydroxyl exchange in biotite[J]. American Journal of Science, 1974, 274(4): 396-413. |
[19] | ZHANG C, LI X Y, BEHRENS H, et al. Partitioning of OH-F-Cl between biotite and silicate melt: Experiments and an empirical model[J]. Geochimica et Cosmochimica Acta, 2022, 317: 155-179. |
[20] | WONES R D, EUGSTER P H. Stability of biotite: experiment,theory,and application1[J]. American Mineralogist, 1965, 50(9): 1228-1272. |
[21] | 周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178. |
[22] | 李晓彦, 张超. 大数据和机器学习在矿物学研究中的应用[J]. 矿物岩石地球化学通报, 2023, 42(2): 253-266,252. |
[23] | LI X Y, ZHANG C, BEHRENS H, et al. Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression[J]. Lithos, 2020, 356: 105371. |
[24] | WANG L, SU C, WANG L Q, et al. Refined estimation of Li in mica by a machine learning method[J]. American Mineralogist, 2022, 107(6): 1034-1044. |
[25] | HYSTAD G, DOWNS R T, GREW E S, et al. Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique[J]. Earth and Planetary Science Letters, 2015, 426: 154-157. |
[26] | LI X Y, ZHOU Y Z, WANG J, et al. Contrasting granite metallogeny through the zircon REEcomposition: Perspective from data mining[J]. Applied Geochemistry, 2020, 122: 104758. |
[27] | 王语, 周永章, 肖凡, 等. 基于成矿条件数值模拟和支持向量机算法的深部成矿预测: 以粤北凡口铅锌矿为例[J]. 大地构造与成矿学, 2020, 44(2): 222-230. |
[28] | 焦守涛, 周永章, 张旗, 等. 基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J]. 岩石学报, 2018, 34(11): 3189-3194. |
[29] | SAHA R, UPADHYAY D, MISHRA B. Discriminating tectonic setting of igneous rocks using biotite major element chemistry-A machine learning approach[J]. Geochemistry,Geophysics,Geosystems, 2021, 22: e2021GC010053. |
[30] | SAMADI R, TORABI G, KAWABATA H, et al. Biotite as a petrogenetic discriminator: Chemical insights from igneous,meta-igneous and meta-sedimentary rocks in Iran[J]. Lithos, 2021, 386: 106016. |
[31] | LI X Y, ZHANG C, BEHRENS H, et al. On the improvement of calculating biotite formula from EPMA data: Reexamination of the methods of Dymek (1983),Yavuz and Öztas (1997),Li et al. (2020)and reply to the discussion of Baidya and Das[J]. Lithos, 2022, 412: 106403. |
[32] | MUSHKIN A, NAVON O, HALICZ L, et al. The petrogenesis of A-type magmas from the amram massif,southern Israel[J]. Journal of Petrology, 2003, 44(5): 815-832. |
[33] | HUANG H Q, LI X H, LI W X, et al. Formation of high 18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks,Southern China[J]. Geology, 2011, 39(10): 903-906. |
[34] | ZHAO K D, JIANG S Y, CHEN W F, et al. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism[J]. Lithos, 2013, 160: 292-306. |
[35] | MILLER C F. Are strongly peraluminous magmas derived from pelitic sedimentary sources?[J]. The Journal of Geology, 1985, 93(6): 673-689. |
[36] | STEVENS G, VILLAROS A, MOYEN J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology, 2007, 35(1): 9. |
[37] | WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. |
[38] | CHAPPELL B W, WHITE A J R. I- and S-type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1/2): 1-26. |
[39] | ABDEL-RAHMAN A M. Nature of biotites from alkaline,calc-alkaline,and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2): 525-541. |
[40] | FODEN J, SOSSI P A, WAWRYK C M. Fe isotopes and the contrasting petrogenesis of A-,I- and S-type granite[J]. Lithos, 2015, 212: 32-44. |
[41] | 周宝全, 孙金凤, 杨进辉. 花岗岩类岩石成因的磷灰石微区地球化学和同位素示踪[J]. 岩石学报, 2022, 38(12): 3853-3867. |
[42] | FOSTER M D, NOLAN T B. Interpretation of the composition of trioctahedral micas[J]. Geological Survey Professional Paper, 1960, 354(B): 1-49. |
[43] | HENRY D J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2/3): 316-328. |
[44] | SHAO T B, XIA Y, DING X, et al. Zircon saturation model in silicate melts: A review and update[J]. Acta Geochimica, 2020, 39(3): 387-403. |
[45] | 徐鸿雪, 汪洋. 黑云母温度计能否用于估计花岗质侵入岩的结晶温度?[J]. 岩石矿物学杂志, 2024, 43(1): 37-46. |
[46] | PATIÑO DOUCE A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743. |
[47] | 李小伟, 莫宣学, 赵志丹, 等. 关于A型花岗岩判别过程中若干问题的讨论[J]. 地质通报, 2010, 29(增): 278-285. |
[48] | WONES D R. Stability of biotite: A Reply[J]. American Mineralogist, 1972, 57(1/2): 316-317. |
[49] | MYERS J, EUGSTER H P. The system Fe-Si-O: Oxygen buffer calibrations to 1,500K[J]. Contributions to Mineralogy and Petrology, 1983, 82(1): 75-90. |
[50] | CASTRO A, STEPHENS W E. Amphibole-rich polycrystalline clots in calc-alkaline granitic rocks and their enclaves[J]. The Canadian Mineralogist, 1992, 30(4): 1093-1112. |
[51] | WINTER J D. An introduction to igneous and metamorphic petrology[M]. Upper Saddle River,N.J.: Prentice Hall, 2001. |
[52] | HUEBNER J, SATO M. The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers[J]. American Mineralogist, 1970, 55: 934-952. |
[53] | FROST B R. Chapter 1.introduction to oxygen fugacity and its petrologic importance[M]// Oxide Minerals. Lindsley,Berlin: De Gruyter, 1991. |
[54] | MUNOZ J L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits[J]. Reviews in Mineralogy and Geochemistry, 1984, 13(1): 469-493. |
[55] | MUNOZ J L. Calculation of HF and HCl fugacities from biotite compositions: Revised equations[J]. Geological Society of America Abstract with Program, 1992, 24: A221. |
[56] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. |
[57] | MAATEN L V D, HINTON G E. Visualizing Data using t-SNE[J]. Machine Learning Research, 2008, 9: 2579-2605. |
[58] | GHOJOGH B, CROWLEY M, KARRAY F, et al. Uniform manifold approximation and projection (UMAP)[M]// Elements of Dimensionality Reduction and Manifold Learning. Cham: Springer International Publishing, 2023. |
[59] | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
[60] | ZHANG W S, YU T Z. Research on Boosting theory and its applications[J]. Journal of University of Science and Technology of China, 2016, 46(3): 222-230. |
[61] | BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32. |
[62] | GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. |
[63] | FRIEDMAN J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378. |
[64] | CHEN T Q, GUESTRIN C, CHEN T Q, et al. XGBoost[C]// San Francisco,California,USA. ACM:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. |
[65] | KE G, MENG Q, FINLEY T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree[C]// State of Ohio: Neural Information Processing Systems, 2017. |
[66] | PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C]. 32nd Conference on Neural Information Processing Systems (NIPS), 2018. |
[67] | ÖZGÜR A, ÖZGÜR L, GÜNGÖR T. Text categorization with class-based and corpus-based keyword selection[M]// Computer and Information Sciences-ISCIS 2005. Berlin,Heidelberg: Springer Berlin Heidelberg, 2005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||