Geoscience ›› 2023, Vol. 37 ›› Issue (03): 662-673.DOI: 10.19657/j.geoscience.1000-8527.2023.009
• Ore Deposits and Geochemical Prospecting • Previous Articles Next Articles
LI Zhu1,2(), ZHANG Dehui1(
), YANG Fan3, LIU Xiangchong4
Received:
2022-10-28
Revised:
2023-03-09
Online:
2023-06-10
Published:
2023-07-20
CLC Number:
LI Zhu, ZHANG Dehui, YANG Fan, LIU Xiangchong. Regional Geochemical Data Analysis Using Isometric Log-ratio Transformation and Mixture Distribution[J]. Geoscience, 2023, 37(03): 662-673.
Ag | As | Au | Bi | Cr | Cu | F | Li | Mo | Nb | Ni | Pb | Sn | W | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 0.64 | 0.58 | 0.71 | 1.12 | 0.79 | 0.50 | 0.46 | 0.56 | 0.44 | 1.26 | 0.30 | 0.65 | 0.51 | 0.40 | |
As | -1.62 | 0.90 | 0.80 | 1.09 | 0.72 | 0.63 | 0.52 | 0.67 | 0.72 | 1.10 | 0.65 | 0.85 | 0.65 | 0.54 | |
Au | -5.05 | -3.44 | 1.01 | 0.86 | 0.80 | 0.44 | 0.45 | 0.63 | 0.35 | 1.04 | 0.48 | 0.87 | 0.67 | 0.54 | |
Bi | -5.52 | -3.91 | -0.47 | 1.57 | 1.13 | 0.87 | 0.80 | 0.88 | 0.84 | 1.74 | 0.67 | 0.71 | 0.67 | 0.82 | |
Cr | -1.41 | 0.21 | 3.64 | 4.11 | 0.45 | 0.71 | 0.83 | 1.09 | 0.84 | 0.29 | 1.03 | 1.41 | 1.29 | 0.72 | |
Cu | -1.83 | -0.21 | 3.23 | 3.70 | -0.42 | 0.57 | 0.66 | 0.83 | 0.72 | 0.41 | 0.77 | 1.10 | 0.99 | 0.42 | |
F | 1.51 | 3.13 | 6.56 | 7.03 | 2.92 | 3.34 | 0.26 | 0.46 | 0.27 | 0.78 | 0.41 | 0.74 | 0.48 | 0.31 | |
Li | -1.12 | 0.49 | 3.93 | 4.40 | 0.29 | 0.70 | -2.63 | 0.49 | 0.26 | 0.91 | 0.37 | 0.64 | 0.43 | 0.32 | |
Mo | -4.50 | -2.89 | 0.55 | 1.02 | -3.10 | -2.68 | -6.02 | -3.38 | 0.36 | 1.11 | 0.48 | 0.76 | 0.51 | 0.46 | |
Nb | -1.98 | -0.37 | 3.07 | 3.54 | -0.57 | -0.16 | -3.49 | -0.86 | 2.52 | 0.92 | 0.30 | 0.51 | 0.44 | 0.30 | |
Ni | -2.09 | -0.48 | 2.96 | 3.43 | -0.68 | -0.27 | -3.60 | -0.97 | 2.41 | -0.11 | 1.17 | 1.56 | 1.41 | 0.72 | |
Pb | -1.40 | 0.21 | 3.65 | 4.12 | 0.01 | 0.42 | -2.92 | -0.28 | 3.10 | 0.58 | 0.69 | 0.55 | 0.46 | 0.30 | |
Sn | -3.26 | -1.65 | 1.79 | 2.26 | -1.85 | -1.44 | -4.77 | -2.14 | 1.24 | -1.28 | -1.17 | -1.86 | 0.23 | 0.60 | |
W | -3.96 | -2.34 | 1.10 | 1.56 | -2.55 | -2.13 | -5.47 | -2.84 | 0.55 | -1.98 | -1.87 | -2.55 | -0.70 | 0.54 | |
Zn | -0.12 | 1.49 | 4.93 | 5.40 | 1.29 | 1.70 | -1.63 | 1.00 | 4.38 | 1.86 | 1.97 | 1.28 | 3.14 | 3.84 |
Table 1 Variation matrix (upper right) and the mean of ln(xi/xj) (lower left)
Ag | As | Au | Bi | Cr | Cu | F | Li | Mo | Nb | Ni | Pb | Sn | W | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 0.64 | 0.58 | 0.71 | 1.12 | 0.79 | 0.50 | 0.46 | 0.56 | 0.44 | 1.26 | 0.30 | 0.65 | 0.51 | 0.40 | |
As | -1.62 | 0.90 | 0.80 | 1.09 | 0.72 | 0.63 | 0.52 | 0.67 | 0.72 | 1.10 | 0.65 | 0.85 | 0.65 | 0.54 | |
Au | -5.05 | -3.44 | 1.01 | 0.86 | 0.80 | 0.44 | 0.45 | 0.63 | 0.35 | 1.04 | 0.48 | 0.87 | 0.67 | 0.54 | |
Bi | -5.52 | -3.91 | -0.47 | 1.57 | 1.13 | 0.87 | 0.80 | 0.88 | 0.84 | 1.74 | 0.67 | 0.71 | 0.67 | 0.82 | |
Cr | -1.41 | 0.21 | 3.64 | 4.11 | 0.45 | 0.71 | 0.83 | 1.09 | 0.84 | 0.29 | 1.03 | 1.41 | 1.29 | 0.72 | |
Cu | -1.83 | -0.21 | 3.23 | 3.70 | -0.42 | 0.57 | 0.66 | 0.83 | 0.72 | 0.41 | 0.77 | 1.10 | 0.99 | 0.42 | |
F | 1.51 | 3.13 | 6.56 | 7.03 | 2.92 | 3.34 | 0.26 | 0.46 | 0.27 | 0.78 | 0.41 | 0.74 | 0.48 | 0.31 | |
Li | -1.12 | 0.49 | 3.93 | 4.40 | 0.29 | 0.70 | -2.63 | 0.49 | 0.26 | 0.91 | 0.37 | 0.64 | 0.43 | 0.32 | |
Mo | -4.50 | -2.89 | 0.55 | 1.02 | -3.10 | -2.68 | -6.02 | -3.38 | 0.36 | 1.11 | 0.48 | 0.76 | 0.51 | 0.46 | |
Nb | -1.98 | -0.37 | 3.07 | 3.54 | -0.57 | -0.16 | -3.49 | -0.86 | 2.52 | 0.92 | 0.30 | 0.51 | 0.44 | 0.30 | |
Ni | -2.09 | -0.48 | 2.96 | 3.43 | -0.68 | -0.27 | -3.60 | -0.97 | 2.41 | -0.11 | 1.17 | 1.56 | 1.41 | 0.72 | |
Pb | -1.40 | 0.21 | 3.65 | 4.12 | 0.01 | 0.42 | -2.92 | -0.28 | 3.10 | 0.58 | 0.69 | 0.55 | 0.46 | 0.30 | |
Sn | -3.26 | -1.65 | 1.79 | 2.26 | -1.85 | -1.44 | -4.77 | -2.14 | 1.24 | -1.28 | -1.17 | -1.86 | 0.23 | 0.60 | |
W | -3.96 | -2.34 | 1.10 | 1.56 | -2.55 | -2.13 | -5.47 | -2.84 | 0.55 | -1.98 | -1.87 | -2.55 | -0.70 | 0.54 | |
Zn | -0.12 | 1.49 | 4.93 | 5.40 | 1.29 | 1.70 | -1.63 | 1.00 | 4.38 | 1.86 | 1.97 | 1.28 | 3.14 | 3.84 |
Sn | Cr | W | Ni | |
---|---|---|---|---|
b1 | + | + | - | - |
b2 | + | - | ||
b3 | + | - |
Table 2 Sequential binary partitions of the four elements in the central and southern Da HingganMountains
Sn | Cr | W | Ni | |
---|---|---|---|---|
b1 | + | + | - | - |
b2 | + | - | ||
b3 | + | - |
变量 | 子分布 | 权重 | 均值 | 方差 |
---|---|---|---|---|
b1 | 1 | 0.25 | 0.81 | 0.57 |
2 | 0.75 | 0.65 | 0.12 | |
b2 | 1 | 0.47 | -1.24 | 0.20 |
2 | 0.25 | -2.28 | 0.37 | |
3 | 0.28 | -0.60 | 0.52 | |
b3 | 1 | 0.11 | -0.17 | 0.30 |
2 | 0.13 | -2.63 | 0.85 | |
3 | 0.76 | -1.26 | 0.25 |
Table 3 Results of fitting the mixture distributions of b1, b2 and b3 variables in the central and southern Da Hinggan Mountains
变量 | 子分布 | 权重 | 均值 | 方差 |
---|---|---|---|---|
b1 | 1 | 0.25 | 0.81 | 0.57 |
2 | 0.75 | 0.65 | 0.12 | |
b2 | 1 | 0.47 | -1.24 | 0.20 |
2 | 0.25 | -2.28 | 0.37 | |
3 | 0.28 | -0.60 | 0.52 | |
b3 | 1 | 0.11 | -0.17 | 0.30 |
2 | 0.13 | -2.63 | 0.85 | |
3 | 0.76 | -1.26 | 0.25 |
[1] |
BUCCIANTI A, ZUO R G. Weathering reactions and isometric log-ratio coordinates: Do they speak to each other?[J]. Applied Geochemistry, 2016, 75: 189-199.
DOI URL |
[2] | PAWLOWSKY-GLAHN V, BUCCIANTI A. Compositional Data Analysis: Theory and Applications[M]. Chicester: John Wiley & Sons, 2011. |
[3] |
PAWLOWSKY-GLAHN V, EGOZCUE J J. Compositional data and their analysis: An introduction[J]. Geological Society, London, Special Publications, 2006, 264(1): 1-10.
DOI URL |
[4] | 刘向冲, 王文磊, 裴英茹. 西藏多龙矿集区水系沉积物地球化学数据定量分析与解释[J]. 地质力学学报, 2017, 23(5): 695-706. |
[5] |
LIU X C, WANG W L, PEI Y R, et al. A knowledge-driven way to interpret the isometric log-ratio transformation and mixture distributions of geochemical data[J]. Journal of Geochemical Exploration, 2020, 210: 106417.
DOI URL |
[6] | PAWLOWSKY-GLAHN V, EGOZCUE J J, TOLOSANA-DELGADO R. Modelling and Analysis of Compositional Data[M]. Chicester: John Wiley & Sons, 2015. |
[7] |
FILZMOSER P, HRON K, TEMPL M. Discriminant analysis for compositional data and robust parameter estimation[J]. Computational Statistics, 2012, 27(4): 585-604.
DOI URL |
[8] |
FIŠEROVÁ E, HRON K. On the interpretation of orthonormal coordinates for compositional data[J]. Mathematical Geosciences, 2011, 43(4): 455-468.
DOI URL |
[9] |
ALLÈGREC J, LEWIN E. Scaling laws and geochemical distributions[J]. Earth and Planetary Science Letters, 1995, 132(1/2/3/4): 1-13.
DOI URL |
[10] | 刘向冲, 侯翠霞, 申维, 等. MML-EM方法及其在化探数据混合分布中的应用[J]. 地球科学, 2011, 36(2): 355-359. |
[11] |
SINCLAIR A J. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited[J]. Journal of Geochemical Exploration, 1991, 41(1/2): 1-22.
DOI URL |
[12] | 李柱, 张德会, 沈存利, 等. 内蒙古巴彦塔拉—明安图地区地球化学数据分形和混合筛分定量分析及稀有金属找矿预测[J]. 河南理工大学学报(自然科学版), 2022, 41(6):54-63. |
[13] |
CARRANZA E J M. Geochemical mineral exploration: Should we use enrichment factors or log-ratios?[J]. Natural Resources Research, 2017, 26(4): 411-428.
DOI URL |
[14] |
GRUNSKY E C, SMEE B W. The differentiation of soil types and mineralization from multi-element geochemistry using multivariate methods and digital topography[J]. Journal of Geochemical Exploration, 1999, 67(1/2/3): 287-299.
DOI URL |
[15] | 陈良, 张达, 狄永军, 等. 大兴安岭中南段区域成矿规律初步研究[J]. 地质找矿论丛, 2009, 24(4): 267-271. |
[16] | 刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, 11(1): 269-277. |
[17] | 杨帆. 大兴安岭中南段铅锌多金属矿地球化学建模及定量预测[D]. 北京: 中国地质大学(北京), 2017. |
[18] | 赵一鸣, 张德全. 大兴安岭及邻区铜多金属矿床成矿规律及远景评价[M]. 北京: 地震出版杜, 1997. |
[19] | 欧阳荷根. 大兴安岭南段拜仁达坝—维拉斯托银多金属矿床成矿作用及动力学背景[D]. 北京: 中国地质大学(北京), 2013. |
[20] | 翟德高, 刘家军, 杨永强, 等. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景[J]. 岩石矿物学杂志, 2012, 31(4): 513-523. |
[21] | 翟德高, 刘家军, 李俊明, 等. 内蒙古维拉斯托斑岩型锡矿床成岩、成矿时代及其地质意义[J]. 矿床地质, 2016, 35(5): 1011-1022. |
[22] | 周振华, 吕林素, 冯佳睿, 等. 内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义[J]. 岩石学报, 2010, 26(3): 667-679. |
[23] | 廖震, 王玉往, 王京彬, 等. 内蒙古大井锡多金属矿床岩脉LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 岩石学报, 2012, 28(7): 2292-2306. |
[24] |
刘瑞麟, 武广, 李铁刚, 等. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义[J]. 地学前缘, 2018, 25(5): 183-201.
DOI |
[25] | 张学斌, 周长红, 贾晓青, 等. 内蒙古毛登地区碎斑熔岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 地质通报, 2014, 33(7): 974-983. |
[26] | AITCHISON J. The Statistical Analysis of Compositional Data[M]. London: Chapman and Hall, 1986. |
[27] | 耿国帅, 张德会, 杨帆, 等. 东昆仑东段水系沉积物测量数据处理中因子分析法的应用研究[J]. 金属矿山, 2020(4): 105-117. |
[28] |
EGOZCUE J J, PAWLOWSKY-GLAHN V, MATEU-FIGUERAS G, et al. Isometric logratio transformations for compositional data analysis[J]. Mathematical Geology, 2003, 35(3): 279-300.
DOI URL |
[29] |
EGOZCUE J J, PAWLOWSKY-GLAHN V. Groups of parts and their balances in compositional data analysis[J]. Mathematical Geology, 2005, 37(7): 795-828.
DOI URL |
[30] |
MARTÍN-FERNÁNDEZ J A, PAWLOWSKY-GLAHN V, EGOZCUE J J, et al. Advances in principal balances for compositional data[J]. Mathematical Geosciences, 2018, 50(3): 273-298.
DOI URL |
[31] |
THIOMBANE M, ZUZOLO D, CICCHELLA D, et al. Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional data analysis and C-A fractal model[J]. Journal of Geochemical Exploration, 2018, 189: 85-99.
DOI URL |
[32] |
MURTAGH F, LEGENDRE P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion?[J]. Journal of Classification, 2014, 31(3): 274-295.
DOI URL |
[33] | WHITE W M. Geochemistry[M]. Chichester: Wiley-Blackwell, 2013. |
[34] |
FIGUEIREDO M A T, JAIN A K. Unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 381-396.
DOI URL |
[35] | REINERS P W, CARLSON R W, RENNE P R, et al. Geochronology and Thermochronology[M]. Chichester: John Wiley & Sons, 2017. |
[36] |
SCHMITZ M D, KUIPER K F. High-precision geochronology[J]. Elements, 2013, 9(1): 25-30.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||