Geoscience ›› 2023, Vol. 37 ›› Issue (02): 475-485.DOI: 10.19657/j.geoscience.1000-8527.2022.032
• Mineralogy • Previous Articles Next Articles
CAO Yulu(), ZENG Yuke(), ZHANG Yuanyuan
Received:
2022-03-08
Revised:
2022-10-24
Online:
2023-04-10
Published:
2023-05-23
Contact:
ZENG Yuke
CLC Number:
CAO Yulu, ZENG Yuke, ZHANG Yuanyuan. Comparision of Heavy Mineral Provenance Analysis Methods Based on SEM[J]. Geoscience, 2023, 37(02): 475-485.
Fig.3 Schematic diagram of four scan modes of TIMA(modified from Hrstka et al[42];the number of mineral particles scanned is 10000.In four scan modes, BSE pixels was 2.5 μm and dot spacing was 5 μm; The line spacing of TIMA Line mapping was 30 μm)
样品号 | 分析方法 | 钛铁矿 | 石榴石 | 铬铁矿 | 磁铁矿/赤铁矿 | 榍石 | 锆石 | 金红石 | 白钛石 | 磷灰石 | 角闪石 |
---|---|---|---|---|---|---|---|---|---|---|---|
能谱法 | 28.5 | 23.3 | 17.0 | 13.1 | 9.0 | 2.8 | 2.4 | 2.0 | 1.9 | - | |
XZ17-19 | TIMA点阵模式 | 16.3 | 29.3 | 18.0 | 7.6 | 8.8 | 4.4 | - | 13.3 | 1.4 | 1.0 |
TIMA点模式 | 21.7 | 29.7 | 17.1 | 12.6 | 13.7 | 2.0 | 0.9 | - | 1.3 | - | |
能谱法 | 56.3 | 21.9 | 1.8 | 6.8 | 4.3 | 3.9 | 3.6 | - | 1.4 | - | |
XZ17-10 | TIMA点阵模式 | 48.7 | 28.0 | 2.4 | 4.3 | 6.0 | 7.9 | 1.6 | - | 1.1 | - |
TIMA点模式 | 51.2 | 27.0 | 2.3 | 5.1 | 5.0 | 2.7 | 5.6 | - | 1.2 | - |
Table 1 Heavy minerals of XZ17-19 and XZ17-10 in quantity percentage based on the TIMA and SEM-EDS(%)
样品号 | 分析方法 | 钛铁矿 | 石榴石 | 铬铁矿 | 磁铁矿/赤铁矿 | 榍石 | 锆石 | 金红石 | 白钛石 | 磷灰石 | 角闪石 |
---|---|---|---|---|---|---|---|---|---|---|---|
能谱法 | 28.5 | 23.3 | 17.0 | 13.1 | 9.0 | 2.8 | 2.4 | 2.0 | 1.9 | - | |
XZ17-19 | TIMA点阵模式 | 16.3 | 29.3 | 18.0 | 7.6 | 8.8 | 4.4 | - | 13.3 | 1.4 | 1.0 |
TIMA点模式 | 21.7 | 29.7 | 17.1 | 12.6 | 13.7 | 2.0 | 0.9 | - | 1.3 | - | |
能谱法 | 56.3 | 21.9 | 1.8 | 6.8 | 4.3 | 3.9 | 3.6 | - | 1.4 | - | |
XZ17-10 | TIMA点阵模式 | 48.7 | 28.0 | 2.4 | 4.3 | 6.0 | 7.9 | 1.6 | - | 1.1 | - |
TIMA点模式 | 51.2 | 27.0 | 2.3 | 5.1 | 5.0 | 2.7 | 5.6 | - | 1.2 | - |
样品号 | 位置 | 层位 | 钛铁 矿 | 锆石 | 磁铁矿/ 赤铁矿 | 石榴 石 | 金红 石 | 铬铁 矿 | 角闪 石 | 磷灰 石 | 榍石 | 黑云 母 | 电气 石 | 白钛 石 | 钡硬 锰矿 | 黄钾 铁钒 | ZTR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XZ17-106 | 铁厂沟 | T3b | - | 0.7 | 74.3 | - | 6.4 | - | - | - | - | - | 18.7 | - | - | - | 100.0 | |||||||||||
XZ17-103 | 铁厂沟 | J1b | 26.6 | 2.7 | 2.0 | 1.1 | 1.5 | 65.3 | - | - | - | - | - | 0.8 | - | - | 79.6 | |||||||||||
XZ17-104 | 铁厂沟 | J1s | - | - | 70.7 | - | - | - | - | - | - | - | 2.3 | - | 26.0 | - | 100.0 | |||||||||||
XZ17-94 | 白砾山 | T3b | - | - | 97.2 | - | - | - | - | - | - | - | 2.8 | - | - | - | 100.0 | |||||||||||
XZ17-96 | 白砾山 | J1b | 2.3 | 51.6 | - | 36.6 | 5.7 | - | - | 2.8 | - | - | - | 1.0 | - | - | 59.2 | |||||||||||
XZ17-86 | 白砾山 | J2x | 65.0 | 6.3 | 3.1 | 6.5 | 4.6 | - | 6.8 | - | - | 3.5 | 4.1 | - | - | - | 47.0 | |||||||||||
XZ17-03 | 克拉玛依 | T3x | 93.1 | 4.8 | 2.1 | - | - | - | - | - | - | - | - | - | - | - | 100.0 | |||||||||||
XZ17-06 | 克拉玛依 | J1b | 20.0 | 3.2 | 17.5 | 19.8 | 18.6 | 2.6 | - | - | - | - | - | - | - | 21.0 | 52.3 | |||||||||||
XZ17-09 | 克拉玛依 | J1s | - | - | 47.1 | 29.4 | - | - | - | - | - | - | - | - | - | 23.5 | 0 | |||||||||||
XZ17-10 | 克拉玛依 | J1s | 51.2 | 2.7 | 5.1 | 27 | 5.6 | 2.3 | - | 1.2 | 5 | - | - | - | - | - | 20.0 |
Table 2 Heavy minerals assemblage and quantity percentage of Mesozoic strata in northwestern Junggar Basin(quantity percentage,%)
样品号 | 位置 | 层位 | 钛铁 矿 | 锆石 | 磁铁矿/ 赤铁矿 | 石榴 石 | 金红 石 | 铬铁 矿 | 角闪 石 | 磷灰 石 | 榍石 | 黑云 母 | 电气 石 | 白钛 石 | 钡硬 锰矿 | 黄钾 铁钒 | ZTR | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XZ17-106 | 铁厂沟 | T3b | - | 0.7 | 74.3 | - | 6.4 | - | - | - | - | - | 18.7 | - | - | - | 100.0 | |||||||||||
XZ17-103 | 铁厂沟 | J1b | 26.6 | 2.7 | 2.0 | 1.1 | 1.5 | 65.3 | - | - | - | - | - | 0.8 | - | - | 79.6 | |||||||||||
XZ17-104 | 铁厂沟 | J1s | - | - | 70.7 | - | - | - | - | - | - | - | 2.3 | - | 26.0 | - | 100.0 | |||||||||||
XZ17-94 | 白砾山 | T3b | - | - | 97.2 | - | - | - | - | - | - | - | 2.8 | - | - | - | 100.0 | |||||||||||
XZ17-96 | 白砾山 | J1b | 2.3 | 51.6 | - | 36.6 | 5.7 | - | - | 2.8 | - | - | - | 1.0 | - | - | 59.2 | |||||||||||
XZ17-86 | 白砾山 | J2x | 65.0 | 6.3 | 3.1 | 6.5 | 4.6 | - | 6.8 | - | - | 3.5 | 4.1 | - | - | - | 47.0 | |||||||||||
XZ17-03 | 克拉玛依 | T3x | 93.1 | 4.8 | 2.1 | - | - | - | - | - | - | - | - | - | - | - | 100.0 | |||||||||||
XZ17-06 | 克拉玛依 | J1b | 20.0 | 3.2 | 17.5 | 19.8 | 18.6 | 2.6 | - | - | - | - | - | - | - | 21.0 | 52.3 | |||||||||||
XZ17-09 | 克拉玛依 | J1s | - | - | 47.1 | 29.4 | - | - | - | - | - | - | - | - | - | 23.5 | 0 | |||||||||||
XZ17-10 | 克拉玛依 | J1s | 51.2 | 2.7 | 5.1 | 27 | 5.6 | 2.3 | - | 1.2 | 5 | - | - | - | - | - | 20.0 |
[1] | 王明磊, 张廷山, 王兵, 等. 重矿物分析在古地理研究中的应用——以准噶尔盆地南缘中段古近系紫泥泉子组紫三段为例[J]. 中国地质, 2009, 36(2):456-464. |
[2] |
MANGE M A, OTVOS E G. Gulf coastal plain evolution in West Louisiana: Heavy mineral provenance and Pleistocene alluvial chronology[J]. Sedimentary Geology, 2005, 182(1):29-57.
DOI URL |
[3] |
ZHU X, SHEN C, ZHOU R, et al. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin,East China: Constraints from detrital zircon U-Pb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 553: 109776.
DOI URL |
[4] | 吴朝东, 林畅松, 申延平, 等. 库车坳陷侏罗系砂岩组分和重矿物组合特征及其源区属性[J]. 自然科学进展, 2005, 15(3):37-43. |
[5] |
GARZANTI E, VERMEESCH P, ANDÒ S, et al. Provenance and recycling of Arabian desert sand[J]. Earth-Science Reviews, 2013, 120: 1-19.
DOI URL |
[6] |
WELTJE G J, VON EYNATTEN H. Quantitative provenance analysis of sediments: review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1-11.
DOI URL |
[7] |
FLEET W F. Petrological Notes on the Old Red Sandstone of the West Midlands[J]. Geological Magazine, 1926, 63(11):505-516.
DOI URL |
[8] | MANGE M A, MAURER H F W. Heavy minerals in the study of sediments: their application and limitations[M]. Dordrecht: Springer, 1992: 385-410. |
[9] | 白思楚. 辽河口近代沉积物重矿物特征与物源分析[D]. 北京: 中国地质大学(北京), 2020. |
[10] |
许苗苗, 魏晓椿, 杨蓉, 等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2):154-171.
DOI |
[11] |
LI L, GUO Z, GUAN S, et al. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin[J]. Science China Earth Sciences, 2015, 58(6): 859-875.
DOI URL |
[12] | 岳艳. 浅谈重矿物物源分析方法[J]. 科技情报开发与经济, 2010, 20(12):138-139,146. |
[13] | 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3):409-415. |
[14] | 向绪洪, 邵磊, 乔培军, 等. 珠江流域沉积物重矿物特征及其示踪意义[J]. 海洋地质与第四纪地质, 2011, 31(6):27-35. |
[15] | 林洪, 李凤杰, 李磊, 等. 柴达木盆地北缘古近系重矿物特征及物源分析[J]. 天然气地球科学, 2014, 25(4):532-541. |
[16] | 付玲, 关平, 赵为永, 等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报, 2013, 29(8):2867-2875. |
[17] | 温利刚, 贾木欣, 王清, 等. 自动矿物学:Ⅰ.技术进展与应用[J]. 中国矿业, 2020, 29(增):341-349. |
[18] | 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2):121-129. |
[19] | BREITER K, ĎURIŠOVÁ J, HRSTKA T, et al. The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar rocks, Tregonning topaz granite, Cornwall[J]. Lithos, 2018, 302: 370-388. |
[20] | BREITER K, ĎURIŠOVÁ J, HRSTKA T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292: 198-217. |
[21] |
WARD I, MERIGOT K, MCINNES B I A. Application of Quantitative Mineralogical Analysis in archaeological micromorphology: a case study from Barrow Is., Western Australia[J]. Journal of Archaeological Method and Theory, 2018, 25(1): 45-68.
DOI |
[22] |
KNAPPETT C, PIRRIE D, POWER M R, et al. Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN©): a pilot study on LB I pottery from Akrotiri, Thera[J]. Journal of Archaeological Science, 2011, 38(2): 219-232.
DOI URL |
[23] | 宋土顺, 李轩, 张颖, 等. QEMSCAN矿物定量分析技术在成岩作用研究中的运用:以扶余油层致密砂岩为例[J]. 地质科技情报, 2016, 35(3):193-198. |
[24] | NIE J, PENG W, PFAFF K, et al. Controlling factors on heavy mineral assemblages in Chinese loess and red clay[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 381: 110-118. |
[25] |
NIE J, PENG W. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau[J]. Aeolian Research, 2014, 13: 71-75.
DOI URL |
[26] |
GOODALL W R. Characterisation of mineralogy and gold deportment for complex tailings deposits using QEMSCAN[J]. Minerals Engineering, 2008, 21(6): 518-523.
DOI URL |
[27] |
SANDMANN D. Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas[J]. Journal of Minerals and Materials Characterization and Engineering, 2013, 1(6): 285.
DOI URL |
[28] | 渠洪杰, 胡健民, 李玮, 等. 新疆西北部和什托洛盖盆地早中生代沉积特征及构造演化[J]. 地质学报, 2008, 82 (4):441-450. |
[29] | 李玮, 胡健民, 瞿洪杰. 新疆准噶尔盆地西北缘中生代盆地边界探讨[J]. 西北大学学报(自然科学版), 2009, 39(5):821-830. |
[30] |
XU Z, HAN B F, REN R, et al. Palaeozoic multiphase magmatism at Barleik Mountain, southern west Junggar, Northwest China: implications for tectonic evolution of the west Junggar[J]. International Geology Review, 2013, 55(5):633-656.
DOI URL |
[31] | 孙自明. 新疆西北部和什托洛盖盆地构造演化与后期走滑-冲断改造[J]. 西北地质, 2015, 48(2):150-158. |
[32] | 胡杨, 夏斌, 郭峰, 等. 新疆和什托洛盖盆地构造演化特征及其对油气成藏的影响[J]. 地质与资源, 2012, 21(4):380-385. |
[33] | 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006, 22(5):1077-1086. |
[34] | 陈石, 郭召杰. 达拉布特蛇绿岩带的时限和属性以及对西准噶尔晚古生代构造演化的讨论[J]. 岩石学报, 2010, 26(8):2336-2344. |
[35] | 李玮. 准噶尔西北缘造山带中生代盆地形成机制及构造演化[D]. 北京: 中国地质科学院, 2007. |
[36] |
MORTON A C, HALLSWORTH C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
DOI URL |
[37] |
DRYDEN J A L. Accuracy in percentage representation of heavy mineral frequencies[J]. Proceedings of the National Academy of Sciences of the United States of America, 1931, 17(5): 233.
PMID |
[38] | VAN ANDEL T H. Provenance, Transport and Deposition of Rhine Sediments[M]. Groningen:Veenman, 1950. |
[39] |
VAN DER PLAS L. Preliminary note on the granulometric analysis of sedimentary rocks[J]. Sedimentology, 1962, 1(2): 145-157.
DOI URL |
[40] |
GALEHOUSE J S. Counting grain mounts: number percentage vs. number frequency[J]. Journal of Sedimentary Research, 1969, 39(2): 812-815.
DOI URL |
[41] |
LASTRA R, PAKTUNC D. An estimation of the variability in automated quantitative mineralogy measurements through inter-laboratory testing[J]. Minerals Engineering, 2016, 95: 138-145.
DOI URL |
[42] | HRSTKA T, GOTTLIEB P, SKALA R, et al. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA)[J]. Journal of Geosciences, 2018, 63(1): 47-63. |
[43] | 李波, 梁冬云, 张莉莉, 等. 自动矿物分析系统的统计误差分析[J]. 矿冶, 2018, 27(4):120-123. |
[44] |
DUNKL I, VON EYNATTEN H, ANDÒ S, et al. Comparability of heavy mineral data-The first interlaboratory round robin test[J]. Earth-Science Reviews, 2020, 211: 103210.
DOI URL |
[45] | 倪敏婕. 准噶尔盆地西北缘中下中生界物源分析及其构造意义[D]. 北京: 中国石油大学(北京), 2019. |
[46] | 何苗, 姜勇, 张恒, 等. 准噶尔盆地西北缘三叠系重矿物特征及其物源指示意义[J]. 地质论评, 2019, 65(2):464-476. |
[47] | CHEN S, PE-PIPER G, PIPER D J W, et al. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China[J]. Tecto-nics, 2014, 33(12): 2419-2443. |
[1] | YAO Yaqin, YANG Jilei, ZHAO Dujing, QI Yumin, WEI Wenyan, CAO Jie, YANG Jiaojiao, LI Guoliang. Characteristics and Geological Significance of the Paleogene Microfossil Assemblages in the Liaoxi Sag, Bohai Bay Basin [J]. Geoscience, 2024, 38(01): 230-239. |
[2] | GAN Jun, JI Hongquan, LIANG Gang, HE Xiaohu, XIONG Xiaofeng, LI Xing. Gas Accumulation Model of Mesozoic Buried Hill in Qiongdongnan Basin [J]. Geoscience, 2022, 36(05): 1242-1253. |
[3] | YANG Hanwen, WANG Jianzhong, ZHAO Jun, DUAN Jun, WANG Rongmin, GAO Wenbin, WEI Wenhao, ZHENG Yanhe. Ancient Crust Remelting in Wenquan Area, Xinjiang: Evidence from the Age and Sr-Nd Isotopes of the Late Carboniferous Granite Porphyry Dykes [J]. Geoscience, 2022, 36(03): 824-835. |
[4] | WANG Bin, REN Tao, SONG Yiwei, YANG Ke, WANG Zhanbin, SUN Yake. Geochemical Characteristics and Geological Significance of Stream Sediments in Changjiashan Region, Western Qinling Orogen [J]. Geoscience, 2022, 36(03): 911-922. |
[5] | WANG Xueyin, HUANG Yiling, QUAN Binbin, LIN Daoxiu, HAN Zhenchun. Spatial Variability Characteristics and Influencing Factors of Available Contents of Nutritive Elements in Tillage Layer Soil of Ruian, Zhejiang Province [J]. Geoscience, 2022, 36(03): 963-971. |
[6] | CAO Lanzhu, WU Piao, HOU Dujie, WEI Xiuli, ZHEN Ronghua. Classification of Sub-sags in the Erlian Basin and Its Petroleum Prospecting Significance [J]. Geoscience, 2022, 36(02): 719-728. |
[7] | WU Long, LIU Changfeng, LIU Wencan, ZHANG Hongyuan. Detrital Zircon U-Pb Dating and Provenance Analysis for the Triassic Sandstone in Qilianshan Orogen, NE Margin of Tibetan Plateau [J]. Geoscience, 2021, 35(05): 1178-1193. |
[8] | WANG Jin, YU Xinghe, ZHONG Yufang, ZHOU Ming, YANG Xintao. Braided River Depositional Characteristics of the Triassic Lower Karamay Formation at Hongshanzui, Junggar Basin [J]. Geoscience, 2021, 35(03): 841-849. |
[9] | GUO Na, LIU Cui, CUI Long, YAO Wei, LI Guoying, GAN Liming, HUANG Yong. Igneous Assemblage and Metallogenic Background of the Mawu Gold Deposit in the Min-Li Ore Belt of the Western Qinling Orogen [J]. Geoscience, 2020, 34(06): 1261-1276. |
[10] | WANG Kuo, LUAN Xiwu, RAN Weimin, WEI Xinyuan, ZHANG Hao, SHI Yanfeng, MOHAMMAD Saiful Islam. Tectonic Evolution of the Southeastern Gulf of Mexico Basin [J]. Geoscience, 2020, 34(04): 700-709. |
[11] | TAN Cong, YU Bingsong, YUAN Xuanjun, LIU Ce, WANG Tongshan, ZHU Xi. Color Origin of the Lower Triassic Liujiagou and Heshanggou Formations Red Beds in the Ordos Basin [J]. Geoscience, 2020, 34(04): 769-783. |
[12] | LI Yijia, RUAN Zhuang, LIU Shuai, CHANG Qiuhong, LAI Wei, YANG Zhihui. Provenance and Tectonic Setting of Chang 10-Chang 8 Member in the Southern Ordos Basin [J]. Geoscience, 2020, 34(04): 784-799. |
[13] | WANG Wenjun. Reserve Estimation, Spatiotemporal Distribution and Its Influencing Factors of Soil Organic Carbon in Fujian Province, China [J]. Geoscience, 2019, 33(06): 1295-1305. |
[14] | LIAN Chenqin, YAO Fojun, YANG Jianmin, GENG Xinxia, CUI Shunyao, PU Wanfeng, ZHANG Zhigang. The Extraction of Alteration Information with Remote Sensing Image of Semi-exposed Area: A Case Study of the Maqu Area in Gansu [J]. Geoscience, 2019, 33(05): 1079-1085. |
[15] | WU Qingxun, GAO Kunshun, WU Haoming, GUO Ying, CHEN Xinlu. Characteristics of Pre-Cenozoic Basement in Bohai Sea and its Significance in Oil and Gas Exploration [J]. Geoscience, 2019, 33(04): 802-810. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||