Geoscience ›› 2021, Vol. 35 ›› Issue (01): 244-257.DOI: 10.19657/j.geoscience.1000-8527.2021.01.25
• Ore Deposits and Geochemistry • Previous Articles Next Articles
ZENG Ruiyin1,2,3(), JIANG Hua1,4, ZHU Xinyou2(
), ZHANG Xiong2, XIAO Jian2,5, LÜ Xiaoqiang2, HU Chuan4, YANG Xiaokun4, LI Jinlin6, ZHEN Zheguang6
Received:
2020-05-05
Revised:
2020-07-15
Online:
2021-02-12
Published:
2021-03-12
Contact:
ZHU Xinyou
CLC Number:
ZENG Ruiyin, JIANG Hua, ZHU Xinyou, ZHANG Xiong, XIAO Jian, LÜ Xiaoqiang, HU Chuan, YANG Xiaokun, LI Jinlin, ZHEN Zheguang. Fluid Evolution and Mineralization Mechanism of Dongchuan Copper Deposit in Yunnan Province[J]. Geoscience, 2021, 35(01): 244-257.
矿体类型 | 寄主 矿物 | 均一温度th/℃ | 冰点温度tm,ice/℃ | NaCl子晶熔化温度tm,s/℃ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | FIA/个 | 范围 | FIA/个 | 盐度/% | 范围 | FIA/个 | 盐度/% | |||
桃园式 铜矿 | Dol | 147.5~243.7 | 191.9 | 8 | -19.4~-7.7 | 5 | 11.3~22.0 | 298.3 | 1 | 38.0 | |
Cal | 194.3~219.0 | 209.6 | 3 | ||||||||
Q | 167.5~251.9 | 206.5 | 15 | -21.5~-12.0 | 12 | 15.9~23.4 | 230.2~288.6 | 3 | 33.5~37.6 | ||
统计 | 147.5~251.9 | 202.4 | 26 | -21.5~-7.7 | 20 | 11.3~23.4 | 230.2~298.3 | 4 | 33.5~38.0 | ||
东川式 | 层控 脉状 铜矿体 | Dol | 197.7~249.0 | 226.4 | 12 | -21.4~-9.6 | 8 | 13.5~23.3 | 293.1~331.4 | 5 | 37.7~41.2 |
Q | 185.0~275.8 | 213.8 | 17 | -21.7~-14.8 | 8 | 18.5~23.5 | 268.0~378.3 | 9 | 36.1~45.2 | ||
统计 | 185.0~275.8 | 222.5 | 29 | -21.7~-9.6 | 16 | 13.5~23.5 | 268.0~378.3 | 14 | 36.1~45.2 | ||
层状 铜矿体 | Dol | 168.7~224.2 | 185.4 | 6 | -20.7~-14.2 | 5 | 17.9~22.9 | 222.5 | 1 | 33.1 | |
Q | 133.7~288.6 | 208.8 | 25 | -20.9~-8.8 | 19 | 12.6~23.0 | 280.1~375.8 | 3 | 36.7~44.9 | ||
统计 | 133.7~288.6 | 205.6 | 31 | -20.9~-8.8 | 24 | 12.6~23.0 | 222.5~375.8 | 4 | 33.1~44.9 | ||
稀矿山式 铁铜矿体 | Dol | 170.1~304.3 | 213.04 | 10 | -22.1~-14.0 | 8 | 17.8~23.8 | 304.8~362.7 | 2 | 38.9~43.6 | |
Cal | 191.9~337.4 | 243.84 | 10 | -21.0~-20.4 | 2 | 22.6~23.0 | 273.1~339.2 | 8 | 36.2~41.4 | ||
Q | 181.3~357.9 | 244.44 | 11 | -21.5~-15.3 | 11 | 18.9~23.4 | 291.2 | 1 | 37.5 | ||
Ab | 190.0~273.0 | 12 | -22.0~-12.0 | 5 | 16.0~23.7 | ||||||
统计 | 170.1~357.9 | 234.12 | 31 | -22.1~-12.0 | 26 | 16.0~23.8 | 273.1~362.7 | 11 | 36.2~43.6 | ||
辉绿岩中 的铜矿体 | Dol | 182.2~256.7 | 212.8 | 14 | -19.2~-13.4 | 10 | 17.2~22.0 | 351.1 | 1 | 42.6 | |
Q | 193.6~293.6 | 232.6 | 10 | -20.9~-17.5 | 5 | 20.7~23.4 | |||||
统计 | 182.2~293.6 | 220.8 | 24 | -20.9~-13.4 | 15 | 17.2~23.4 | 351.1 | 1 | 42.6 | ||
角砾岩 | Q | 188.8~272.4 | 215.9 | 9 | -14.0~-11.7 | 4 | 15.6~17.8 | 230.0~337.8 | 5 | 33.5~41.3 |
Table 1 Microthermometric data of fluid inclusions in Dongchuan copper deposit
矿体类型 | 寄主 矿物 | 均一温度th/℃ | 冰点温度tm,ice/℃ | NaCl子晶熔化温度tm,s/℃ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | FIA/个 | 范围 | FIA/个 | 盐度/% | 范围 | FIA/个 | 盐度/% | |||
桃园式 铜矿 | Dol | 147.5~243.7 | 191.9 | 8 | -19.4~-7.7 | 5 | 11.3~22.0 | 298.3 | 1 | 38.0 | |
Cal | 194.3~219.0 | 209.6 | 3 | ||||||||
Q | 167.5~251.9 | 206.5 | 15 | -21.5~-12.0 | 12 | 15.9~23.4 | 230.2~288.6 | 3 | 33.5~37.6 | ||
统计 | 147.5~251.9 | 202.4 | 26 | -21.5~-7.7 | 20 | 11.3~23.4 | 230.2~298.3 | 4 | 33.5~38.0 | ||
东川式 | 层控 脉状 铜矿体 | Dol | 197.7~249.0 | 226.4 | 12 | -21.4~-9.6 | 8 | 13.5~23.3 | 293.1~331.4 | 5 | 37.7~41.2 |
Q | 185.0~275.8 | 213.8 | 17 | -21.7~-14.8 | 8 | 18.5~23.5 | 268.0~378.3 | 9 | 36.1~45.2 | ||
统计 | 185.0~275.8 | 222.5 | 29 | -21.7~-9.6 | 16 | 13.5~23.5 | 268.0~378.3 | 14 | 36.1~45.2 | ||
层状 铜矿体 | Dol | 168.7~224.2 | 185.4 | 6 | -20.7~-14.2 | 5 | 17.9~22.9 | 222.5 | 1 | 33.1 | |
Q | 133.7~288.6 | 208.8 | 25 | -20.9~-8.8 | 19 | 12.6~23.0 | 280.1~375.8 | 3 | 36.7~44.9 | ||
统计 | 133.7~288.6 | 205.6 | 31 | -20.9~-8.8 | 24 | 12.6~23.0 | 222.5~375.8 | 4 | 33.1~44.9 | ||
稀矿山式 铁铜矿体 | Dol | 170.1~304.3 | 213.04 | 10 | -22.1~-14.0 | 8 | 17.8~23.8 | 304.8~362.7 | 2 | 38.9~43.6 | |
Cal | 191.9~337.4 | 243.84 | 10 | -21.0~-20.4 | 2 | 22.6~23.0 | 273.1~339.2 | 8 | 36.2~41.4 | ||
Q | 181.3~357.9 | 244.44 | 11 | -21.5~-15.3 | 11 | 18.9~23.4 | 291.2 | 1 | 37.5 | ||
Ab | 190.0~273.0 | 12 | -22.0~-12.0 | 5 | 16.0~23.7 | ||||||
统计 | 170.1~357.9 | 234.12 | 31 | -22.1~-12.0 | 26 | 16.0~23.8 | 273.1~362.7 | 11 | 36.2~43.6 | ||
辉绿岩中 的铜矿体 | Dol | 182.2~256.7 | 212.8 | 14 | -19.2~-13.4 | 10 | 17.2~22.0 | 351.1 | 1 | 42.6 | |
Q | 193.6~293.6 | 232.6 | 10 | -20.9~-17.5 | 5 | 20.7~23.4 | |||||
统计 | 182.2~293.6 | 220.8 | 24 | -20.9~-13.4 | 15 | 17.2~23.4 | 351.1 | 1 | 42.6 | ||
角砾岩 | Q | 188.8~272.4 | 215.9 | 9 | -14.0~-11.7 | 4 | 15.6~17.8 | 230.0~337.8 | 5 | 33.5~41.3 |
矿脉 类型 | 样号 | 寄主 矿物 | 均一温度th/℃ | 冰点温度tm,ice/℃ | NaCl子晶熔化温度tm,s/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | FIA/个 | 范围 | FIA/个 | 盐度/% | 范围 | FIA/个 | 盐度/% | |||
顺层 细矿脉 | DC10-2 | Dol | 159.0~224.2 | 185.4 | 5 | -20.7~-14.2 | 4 | 17.9~22.9 | 222.5 | 1 | 33.1 |
DC1937-1 | Q | 133.7~240.9 | 187.4 | 7 | -14.4~-8.8 | 4 | 12.6~18.1 | 344.3~375.8 | 2 | 41.9~44.9 | |
DC66C-1 | Q | 165.3~242.7 | 197.5 | 8 | -20.8~-12.8 | 7 | 16.7~22.9 | ||||
统计 | 133.7~242.7 | 192.4 | 20 | -20.8~-8.8 | 15 | 12.6~22.9 | 222.5~375.8 | 3 | 33.1~44.9 | ||
高角 度含 矿脉 | DC1937-1 | Q | 188.2~288.6 | 233.6 | 10 | -17.5~-9.8 | 7 | 13.1~20.6 | 280.1~302.9 | 2 | 36.7~38.4 |
DC1919-3 | Q | 180.9~246.6 | 202.7 | 6 | -20.9~-14.2 | 6 | 18.0~23.0 | ||||
统计 | 180.9~288.6 | 222.0 | 16 | -20.9~-9.8 | 13 | 13.7~23.0 | 280.1~302.9 | 2 | 36.7~38.4 |
Table 2 Microthermometric data of fluid inclusions in Dongchuan type stratiform copper orebodies
矿脉 类型 | 样号 | 寄主 矿物 | 均一温度th/℃ | 冰点温度tm,ice/℃ | NaCl子晶熔化温度tm,s/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
范围 | 均值 | FIA/个 | 范围 | FIA/个 | 盐度/% | 范围 | FIA/个 | 盐度/% | |||
顺层 细矿脉 | DC10-2 | Dol | 159.0~224.2 | 185.4 | 5 | -20.7~-14.2 | 4 | 17.9~22.9 | 222.5 | 1 | 33.1 |
DC1937-1 | Q | 133.7~240.9 | 187.4 | 7 | -14.4~-8.8 | 4 | 12.6~18.1 | 344.3~375.8 | 2 | 41.9~44.9 | |
DC66C-1 | Q | 165.3~242.7 | 197.5 | 8 | -20.8~-12.8 | 7 | 16.7~22.9 | ||||
统计 | 133.7~242.7 | 192.4 | 20 | -20.8~-8.8 | 15 | 12.6~22.9 | 222.5~375.8 | 3 | 33.1~44.9 | ||
高角 度含 矿脉 | DC1937-1 | Q | 188.2~288.6 | 233.6 | 10 | -17.5~-9.8 | 7 | 13.1~20.6 | 280.1~302.9 | 2 | 36.7~38.4 |
DC1919-3 | Q | 180.9~246.6 | 202.7 | 6 | -20.9~-14.2 | 6 | 18.0~23.0 | ||||
统计 | 180.9~288.6 | 222.0 | 16 | -20.9~-9.8 | 13 | 13.7~23.0 | 280.1~302.9 | 2 | 36.7~38.4 |
[1] | ZHAO X F, ZHOU M F, HITZMAN M, et al. Late Paleoprote-rozoic to Early Mesoproterozoic Tangdan sedimentary rock-hosted strata-bound copper deposit,Yunnan Province,Southwest China[J]. Economic Geology, 2012,107(2):357-375. |
[2] | HITZMAN M, KIRKHAM R, BROUGHTON D, et al. The sediment-hosted stratiform copper ore system[J]. EconomicGeology, 2005,100:609-642. |
[3] | HITZMAN M, SELLEY D, BULL S. Formation of sedimentary rock-hosted stratiform copper deposits through earth history[J]. Economic Geology, 2010,105:627-639. |
[4] | ZHAO X F, ZHOU M F, LI J W, et al. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan,SW China:Implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010,182(1):57-69. |
[5] | HUANG X W, ZHAO X F, QI L, et al. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit,SW China[J]. Chemical Geology, 2013,347:9-19. |
[6] | 刘玄, 范宏瑞, 胡芳芳, 等. 沉积岩型层状铜矿床研究进展[J]. 地质论评, 2015,61(1):45-63. |
[7] | 祝新友, 张雄, 蒋策鸿, 等. 云南东川铜矿的后生成因与勘查意义[J]. 矿物学报, 2017,37(增刊):154-155. |
[8] | COX D P, LINDSEY D A, SINGER D P, et al. Sediment-hosted copper deposits of the world:deposit models and database[R]. Reston,Virginia:United States Geological Survey, 2003: 1-53. |
[9] | 叶霖. 东川稀矿山式铜矿地球化学研究[D]. 贵阳:中国科学院地球化学研究所, 2004: 1-117. |
[10] | 高辉, 裴荣富, 王安建, 等. 海相砂页岩型铜矿成矿模式与地质对比——以中国云南东川铜矿和阿富汗安纳克铜矿为例[J]. 地质通报, 2012,31(8):1332-1351. |
[11] | 阮惠础, 华仁民, 倪培. 东川式铜矿的成因再探[J]. 地质找矿论丛, 1988,3(1):9-22. |
[12] | 华仁民. 东川式层状铜矿的沉积-改造成因[J]. 矿床地质, 1989,8(2):3-13. |
[13] | 华仁民, 阮惠础, 倪培. 东川式层控铜矿中非层状矿体的形成机制初议[J]. 地质找矿论丛, 1993,8(4):1-8. |
[14] | 冉崇英. 论东川—易门式铜矿的矿源与成矿流体[J]. 昆明工学院学报, 1989,14(4):12-20. |
[15] | 冉崇英, 吴鹏. 东川—易门式铜矿床成矿作用研究的几个问题[J]. 大地构造与成矿学, 2014,38(4):848-854. |
[16] | 龚琳, 何毅特, 陈天佑, 等. 云南东川元古宙裂谷型铜矿[M]. 北京: 冶金工业出版社, 1996: 1-252. |
[17] | 李志群. 中元古界昆阳群因民组铁铜矿的成矿地球化学研究[J]. 矿产与地质, 1996,10(2):100-107. |
[18] | 方维萱, 杨新雨, 郭茂华, 等. 云南白锡腊碱性钛铁质辉长岩类与铁氧化物铜金型矿床关系研究[J]. 大地构造与成矿学, 2013,37(2):242-261. |
[19] | 李元龙. 东川稀矿山式铜铁矿床地质地球化学特征及构造控矿模式分析[D]. 昆明:昆明理工大学, 2013: 1-102. |
[20] | 朱文兵. 云南因民铜矿床地质地球化学特征与成因研究[D]. 北京:中国地质大学(北京), 2016: 1-79. |
[21] | 蒋策鸿. 云南东川铜矿床成矿流体与成因研究[D]. 北京:中国地质大学(北京), 2019: 1-61. |
[22] | 华仁民. 成矿过程中由流体混合而导致金属沉淀的研究[J]. 地球科学进展, 1994,9(4):15-22. |
[23] | RUAN H C, HUA R M, COX D P. Copper deposition by fluid mixing in deformed strata adjacent to a salt diapir,Dongchuan area,Yunnan Province,China[J]. Economic Geology, 1991,86(7):1539-1545. |
[24] | 代鸿章, 刘家军, 朱文兵. 云南因民铜矿床构造沉积环境及成矿机制研究[J]. 地学前缘, 2018,25(1):108-124. |
[25] | 林仕良, 楼雄英, 高永娟, 等. 云南1:5万马树、干沟、白雾街、汤丹(G48E008005、G48E009005、G48E010005、G48E011005)4幅区域地质矿产调查成果报告[R]. 成都:成都地质调查中心, 2016: 1-307. |
[26] | 祝新友, 王京彬, 刘慎波, 等. 广东凡口铅锌矿床成矿年代——来自辉绿岩锆石SHRIMP定年证据[J]. 地质学报, 2013,87(2):167-177. |
[27] | 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 1-487. |
[28] | HALL D L, STERNER S M, BODNAR R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology, 1988,83:197-202. |
[29] | 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987,7(4):345-352. |
[30] | 刘斌. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用[J]. 地质论评, 2001,47(6):617-622. |
[31] | JIANG Y H, NIU H C, BAO Z W, et al. Fluid evolution of the Paleoproterozoic Hujiayu copper deposit in the Zhongtiaoshan region:Evidence from fluid inclusions and carbon-oxygen isotopes[J]. Precambrian Research, 2014,255:734-747. |
[32] | 池国祥, 卢焕章. 流体包裹体组合对测温数据有效性的制约及数据表达方法[J]. 岩石学报, 2008,24(9):1945-1953. |
[33] | 刘建明, 刘家军. 滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J]. 矿物学报, 1997,17(4):448-456. |
[34] | SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010,105:3-41. |
[35] | 朱乔乔, 谢桂青, 王建, 等. 含膏盐地层与矽卡岩型铁矿的关系:以湖北金山店铁矿为例[J]. 地质学报, 2013,87(9):1419-1429. |
[36] | SELLEY D, BROUGHTON D, SCOTT R, et al. A new look at the geology of the Zambian copper belt[J]. Economic Geology, 2005,100:965-1000. |
[37] | SEO J H, HEINRICH C A. Selective copper diffusion into quartz-hosted vapor inclusions:Evidence from other host minerals,driving forces,and consequences for Cu-Au ore formation[J]. Geochimica et Cosmochimica Acta, 2013,113:60-69. |
[38] | 周云, 段其发, 曹亮, 等. 湘西花垣地区铅锌矿床流体包裹体显微测温与特征元素测定[J]. 地球科学, 2018,43(7):2465-2483. |
[39] | CAILTEUX J L H, KAMPUNZU A B, LEROUGE C, et al. Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African copper belt[J]. Journal of African Earth Sciences, 2005,42:134-158. |
[40] | HAYES T S, COX D P, PIATAK N M, et al. Sediment-hosted stratabound copper deposit model:Chapter M of mineral deposit models for resource assessment[R].Reston, Virginia:United States Geological Survey, 2015: 1-148. |
[41] | STRAUSS H. The sulfur isotopic record of Precambrian sulfates:New data and a critical evaluation of the existing record[J]. Precambrian Research, 1993,63:225-246. |
[42] | DESOUKY H A E, MUCHEZ P, BOYCE A J, et al. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Lui-swishi and Kamoto, Katanga copper belt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2010,45:735-763. |
[43] | 华仁民, 阮惠础, 刘燕, 等. 东川铜矿的碳、氧同位素地质特征[J]. 桂林冶金地质学院学报, 1988,8(1):57-62. |
[44] | 李强, 马绍春. 云南东川大梁子铀矿床微量、稀土元素地球化学特征及其意义[J]. 铀矿地质, 2019,35(3):151-156. |
[45] | 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 1997,12(6):546-552. |
[46] | ROSE A W. The effect of cuprous chloride complexes in the origin of red-bed copper and related deposits[J]. Economic Geology, 1976,71:1036-1048. |
[47] | 张艳, 韩润生, 吴鹏, 等. 陆相砂岩型铜矿床矿物分带模式的pH-Eh相图——以楚雄盆地大姚六苴铜矿床为例[J]. 矿物学报, 2013,33(3):363-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||