Geoscience ›› 2019, Vol. 33 ›› Issue (03): 561-573.DOI: 10.19657/j.geoscience.1000-8527.2019.03.09
• Structural Geology and Stratigraphy • Previous Articles Next Articles
LIU Qingshan1,2(), WEI Yushuai1,2(
), ZHANG Baosen1,2, PAN Wanying1,2
Received:
2018-07-24
Revised:
2019-04-25
Online:
2019-06-23
Published:
2019-06-24
Contact:
WEI Yushuai
CLC Number:
LIU Qingshan, WEI Yushuai, ZHANG Baosen, PAN Wanying. Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area, Southern Tibet[J]. Geoscience, 2019, 33(03): 561-573.
Fig.1 Location of Himalayas (a), geologic map of southern Tibet (b)(modified from reference[2]) and geologic map of the study area (c)(modified from reference[13])
样品 名称 | 采样 米数 /m | 分析 质量 /g | 重矿物 总量 /mg | Zr | Ru | Tur | Ap | Mon | Sph | Amp | Px | Grt | Ep | An | Cr-spl | Leu | Py | Clp | Hem | N.I. | tHMC | ZRT | RuZi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16GJ01S1 | 0 | 440 | 1438.0 | 306.6 | 79.7 | 0 | 0 | 24.4 | 61.1 | 0 | 0 | 0 | 0 | 10.8 | 38.1 | 249.7 | 0 | 0 | 557.3 | 74.6 | 1.1 | 74.2 | 26.0 |
16GJ01S2 | 5.0 | 790 | 492.0 | 234.8 | 34.3 | 0 | 0 | 4.5 | 13.0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 2.8 | 0 | 0 | 163.0 | 37.7 | 9.4 | 93.3 | 14.6 |
16GJ01S3 | 9.0 | 510 | 52.0 | 25.6 | 4.5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0.3 | 0.1 | 7.0 | 0 | 0 | 9.3 | 5.0 | 58.1 | 97.8 | 17.5 |
16GJ02S1 | 25.0 | 240 | 183.0 | 65.9 | 30.4 | 9.3 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 7.8 | 0 | 38.3 | 0 | 0 | 1.3 | 13.9 | 8.1 | 93.0 | 46.2 |
16GJ02S2 | 26.0 | 210 | 35.0 | 3.3 | 2.1 | 7.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | 0 | 0.9 | 0 | 0 | 14.6 | 4.5 | 25.8 | 83.3 | 62.4 |
16GJ03S1 | 37.0 | 250 | 81.0 | 11.7 | 8.5 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.5 | 0 | 3.9 | 0 | 0 | 21.6 | 8.4 | 17.9 | 64.9 | 72.1 |
16GJ04S1 | 41.0 | 420 | 714.0 | 13.7 | 17.6 | 17.5 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 38.7 | 0 | 3.8 | 0 | 0 | 551.3 | 69.9 | 0.7 | 54.8 | 127.8 |
16GJ05S1 | 48.0 | 190 | 10 | 3.1 | 2.5 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0 | 1.7 | 0 | 0 | 0.2 | 0.8 | 139.8 | 83.7 | 78.9 |
16GJ06S1 | 53.0 | 400 | 26.0 | 4.8 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 4.3 | 0 | 0 | 5.9 | 2.9 | 76.7 | 89.1 | 80.9 |
16GJ07S1 | 63.0 | 840 | 193.0 | 36.7 | 30.4 | 9.6 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 6.7 | 0 | 56.9 | 0 | 0 | 38.2 | 14.9 | 18.9 | 91.7 | 82.9 |
16GJ08S1 | 73.0 | 330 | 155.0 | 15.6 | 19.0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 25.5 | 0 | 33.2 | 0 | 0 | 46.8 | 12.5 | 8.6 | 58.9 | 121.9 |
16GJ09S1 | 137.0 | 590 | 32.0 | 7.3 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | 0 | 5.2 | 0 | 0 | 6.6 | 3.1 | 98.7 | 81.5 | 54.1 |
16GJ10S1 | 148.0 | 530 | 182.0 | 6.7 | 3.9 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.8 | 0 | 2.5 | 0 | 0 | 99.5 | 47.2 | 5.2 | 64.1 | 58.2 |
16GJ11S1 | 155.0 | 320 | 295.0 | 25.2 | 20.3 | 9.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.2 | 0 | 30.1 | 0 | 0 | 80.4 | 54.5 | 3.6 | 55.8 | 80.5 |
16GJ12S1 | 163.0 | 450 | 297.0 | 24.1 | 14.5 | 23.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.2 | 0 | 35.8 | 0 | 0 | 151.0 | 30.5 | 4.1 | 77.2 | 60.2 |
16GJ13S1 | 167.0 | 310 | 1297.0 | 91.0 | 9.8 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 20.1 | 0 | 422.9 | 0 | 0 | 641.1 | 110.6 | 0.2 | 82.4 | 10.7 |
Table 1 Mineral composition of samples from the Jidula Formation in Gamba, southern Tibet
样品 名称 | 采样 米数 /m | 分析 质量 /g | 重矿物 总量 /mg | Zr | Ru | Tur | Ap | Mon | Sph | Amp | Px | Grt | Ep | An | Cr-spl | Leu | Py | Clp | Hem | N.I. | tHMC | ZRT | RuZi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16GJ01S1 | 0 | 440 | 1438.0 | 306.6 | 79.7 | 0 | 0 | 24.4 | 61.1 | 0 | 0 | 0 | 0 | 10.8 | 38.1 | 249.7 | 0 | 0 | 557.3 | 74.6 | 1.1 | 74.2 | 26.0 |
16GJ01S2 | 5.0 | 790 | 492.0 | 234.8 | 34.3 | 0 | 0 | 4.5 | 13.0 | 0 | 0 | 0 | 0 | 0 | 1.9 | 2.8 | 0 | 0 | 163.0 | 37.7 | 9.4 | 93.3 | 14.6 |
16GJ01S3 | 9.0 | 510 | 52.0 | 25.6 | 4.5 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0.3 | 0.1 | 7.0 | 0 | 0 | 9.3 | 5.0 | 58.1 | 97.8 | 17.5 |
16GJ02S1 | 25.0 | 240 | 183.0 | 65.9 | 30.4 | 9.3 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 7.8 | 0 | 38.3 | 0 | 0 | 1.3 | 13.9 | 8.1 | 93.0 | 46.2 |
16GJ02S2 | 26.0 | 210 | 35.0 | 3.3 | 2.1 | 7.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.5 | 0 | 0.9 | 0 | 0 | 14.6 | 4.5 | 25.8 | 83.3 | 62.4 |
16GJ03S1 | 37.0 | 250 | 81.0 | 11.7 | 8.5 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.5 | 0 | 3.9 | 0 | 0 | 21.6 | 8.4 | 17.9 | 64.9 | 72.1 |
16GJ04S1 | 41.0 | 420 | 714.0 | 13.7 | 17.6 | 17.5 | 0 | 1.5 | 0 | 0 | 0 | 0 | 0 | 38.7 | 0 | 3.8 | 0 | 0 | 551.3 | 69.9 | 0.7 | 54.8 | 127.8 |
16GJ05S1 | 48.0 | 190 | 10 | 3.1 | 2.5 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0 | 1.7 | 0 | 0 | 0.2 | 0.8 | 139.8 | 83.7 | 78.9 |
16GJ06S1 | 53.0 | 400 | 26.0 | 4.8 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 | 4.3 | 0 | 0 | 5.9 | 2.9 | 76.7 | 89.1 | 80.9 |
16GJ07S1 | 63.0 | 840 | 193.0 | 36.7 | 30.4 | 9.6 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 6.7 | 0 | 56.9 | 0 | 0 | 38.2 | 14.9 | 18.9 | 91.7 | 82.9 |
16GJ08S1 | 73.0 | 330 | 155.0 | 15.6 | 19.0 | 2.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 25.5 | 0 | 33.2 | 0 | 0 | 46.8 | 12.5 | 8.6 | 58.9 | 121.9 |
16GJ09S1 | 137.0 | 590 | 32.0 | 7.3 | 3.9 | 2.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.2 | 0 | 5.2 | 0 | 0 | 6.6 | 3.1 | 98.7 | 81.5 | 54.1 |
16GJ10S1 | 148.0 | 530 | 182.0 | 6.7 | 3.9 | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.8 | 0 | 2.5 | 0 | 0 | 99.5 | 47.2 | 5.2 | 64.1 | 58.2 |
16GJ11S1 | 155.0 | 320 | 295.0 | 25.2 | 20.3 | 9.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43.2 | 0 | 30.1 | 0 | 0 | 80.4 | 54.5 | 3.6 | 55.8 | 80.5 |
16GJ12S1 | 163.0 | 450 | 297.0 | 24.1 | 14.5 | 23.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.2 | 0 | 35.8 | 0 | 0 | 151.0 | 30.5 | 4.1 | 77.2 | 60.2 |
16GJ13S1 | 167.0 | 310 | 1297.0 | 91.0 | 9.8 | 0 | 0 | 0 | 1.5 | 0 | 0 | 0 | 0 | 20.1 | 0 | 422.9 | 0 | 0 | 641.1 | 110.6 | 0.2 | 82.4 | 10.7 |
Fig.4 Interlaced cross-layering at the 9th and 11th layers of the basement block of the Jidula Formation (Gamba, southern Tibet) and paleo-flowing rose map
[1] |
WILLEMS H, ZHOU Z, ZHANG B, et al. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China)[J]. Geologische Rundschau, 1996,85(4):723-754.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006,76(1/2):1-131.
DOI URL |
[3] |
CAWOOD P A, JOHNSON M R W, NEMCHIN A A. Early Paleozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007,255:70-84.
DOI URL |
[4] | DING L, MAKSATBEK S, CAI F, et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth(Sciences), 2017,60(4):635-651. |
[5] | WILLEMS H, ZHANG B G. Cretaceous and Lower Tertiary sediments of Tethys Himalaya in the area of Gamba (South Tibet, PR China)[J]. Berichte aus Fachbereich Geowissenschaften der Universitat Bremen, 1993,38:3-27. |
[6] |
JADOUL F, BERRA F, GARZANTI E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (south Tibet)[J]. Journal of Asian Earth Sciences, 1998,16(2/3):173-194.
DOI URL |
[7] |
GARZANTI E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999,17(5/6):805-827.
DOI URL |
[8] |
HU X, GARZANTI E, WANG J, et al. The timing of India-Asia collision onset:facts, theories, controversies[J]. Earth-Science Reviews, 2016,160:264-299.
DOI URL |
[9] |
LI J, HU X, GARZANTI E, et al. Paleogene carbonate microfacies and sandstone provenance(Gamba area, south tibet): Stratigraphic response to initial India-Asia continental collision[J]. Journal of Asian Earth Sciences, 2015,104:39-54.
DOI URL |
[10] |
HU X, SINCLAIR H D, WANG J, et al. Late Cretaceous-Paleogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision[J]. Basin Research, 2012,24(5):520-543.
DOI URL |
[11] |
WAN X Q, JANSA L F, SARTI M. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia[J]. Lethaia, 2010,35(2):131-146.
DOI URL |
[12] |
YIN A. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000,28(28):211-280.
DOI URL |
[13] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014,314(2):548-579.
DOI URL |
[14] | 丁林, 蔡福龙, 张清海, 等. 冈底斯—喜马拉雅碰撞造山带前陆盆地系统及构造演化[J]. 地质科学, 2009,44(4):1289-1311. |
[15] |
LIU G, EINSELE G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geologische Rundschau, 1994,83(1):32-61.
DOI URL |
[16] |
DING L, KAPP P, ZHONG D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003,44(10):1833-1865.
DOI URL |
[17] | 李国彪, 万晓樵, 丁林, 等. 藏南古近纪前陆盆地演化过程及其沉积响应[J]. 沉积学报, 2004,22(3):455-464. |
[18] |
WAN X, LAMOLDA M A, SI J, et al. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet[J]. Cretaceous Research, 2005,26(1):43-48.
DOI URL |
[19] |
SCIUNNACH D, GARZANTI E. Subsidence history of the Tethys Himalaya[J]. Earth-Science Reviews, 2012,111(1/2):179-198.
DOI URL |
[20] |
HU X, GARZANTI E, MOORE T, et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian(Middle Paleocene,59±1 Ma)[J]. Geology, 2015,43(10):859-862.
DOI URL |
[21] |
GARZANTI Eduardo. From static to dynamic provenance analysis-sedimentary petrology upgraded[J]. Sedimentary Geology, 2016,336:3-13.
DOI URL |
[22] |
SUTTNER L J, BASU A, INGERSOLL R V, et al. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method[J]. Journal of Sedimentary Research, 1985,55(4):616-617.
DOI URL |
[23] | MANGE M A, MAURER H F W. Heavy Minerals in Colour[M]. London: Chapman & Hall, 1992: 147. |
[24] | NICHOLS G. Sedimentology and Stratigraphy[M]. London:John Wiley & Sons, 2009: 1-50. |
[25] |
VAVRA G, GEBAUER D, SCHMID R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996,122(4):337-358.
DOI URL |
[26] |
VAVRA G, SCHMID R, GEBAUER D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999,134(4):380-404.
DOI URL |
[27] |
BELOUSOVA E, GRIFFIN W, O REILLY S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002,143(5):602-622.
DOI URL |
[28] | SAKAI H. Rifting of the Gondwana land and uplifting of the Himalayas recorded in Mesozoic and Tertiary fluvial sediments in the Nepal Himalayas[M] //TAIRA A,MASUDA F. Sedimentary Facies in the Active Plate Margin. Tokyo: Terra Scientific Publication Company, 1989: 723-732. |
[29] | YE Z, BAOCHUN H. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern[J]. Science China(Earth Sciences), 2017,60(6):47-56. |
[30] |
CLIFT P D, CARTER A, JONELL T N. U-Pb dating of detrital zircon grains in the Paleocene Stumpata Formation, Tethyan Himalaya,Zanskar,India[J]. Journal of Asian Earth Sciences, 2013,82(3):80-89.
DOI URL |
[31] |
GARZANTI E, HU X. Latest Cretaceous Himalayan tectonics: obduction, collision or Deccan-related uplift?[J]. Gondwana Research, 2015,28(1):165-178.
DOI URL |
[32] |
BICKFORD M E, SAHA D, SCHIEBER J, et al. New U-Pb ages of zircons in the Owk Shale(Kurnool Group)with reflections on proterozoic porcellanites in India[J]. Journal of the Geological Society of India, 2013,82(3):207-216.
DOI URL |
[33] |
GARZANTI E. Himalayan ironstones, superplumes and the breakup of Gondwana[J]. Geology, 1993,21:105-108.
DOI URL |
[34] |
HU X, JANSA L, CHEN L, et al. Provenance of Lower Cretaceous Wolong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana[J]. Sedimentary Geology, 2010,223(3/4):193-205.
DOI URL |
[35] |
GARZANTI E, CASNEDI R, JADOUL F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986,48(3/4):237-265.
DOI URL |
[36] | GEHRELS G E, DECELLES P G, MARTIN A, et al. Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2015,13(9):75-85. |
[37] |
ALAM M, ALAM M M, CURRAY J R, et al. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history[J]. Sedimentary Geology, 2003,155(3):179-208.
DOI URL |
[38] | HALKETT A, WHITE N, CHANDRA K, et al. Dynamic uplift of the Indian Peninsula and the reunion plume[M] //AGU.AGU Fall Meeting Abstracts.Washington:AGU, 2001: 1-5. |
[39] |
LAKSHMINARAYANA G. Evolution in basin fill style during the Mesozoic Gondwana continental break-up in the Godavari Triple Junction, SE India[J]. Gondwana Research, 2002,5(1):227-244.
DOI URL |
[40] | MCQUARRIE N, ROBINSON D, LONG S, et al. Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system[J]. Earth and Planetary Science Letters, 2008,272(1/2):117. |
[41] | GEHRELS G E, DECELLES P G, OJHA T P, et al. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006,28(4/6):408. |
[42] | GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30:TC5016. |
[43] |
HUGHES N C, MYROW P M, MCKENZIE N R, et al. Age and implications of the phosphatic Birmania Formation, Rajasthan, India[J]. Precambrian Research, 2015,267:164-173.
DOI URL |
[44] |
JOY S, JELSMA H, TAPPE S, et al. SHRIMP U-Pb zircon provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda quartzite of Cuddapah Basin with implications for the southern Indian Proterozoic tectonic architecture[J]. Journal of Asian Earth Sciences, 2015,111:827-839.
DOI URL |
[45] |
TURNER C C, MEERT J G, PANDIT M K, et al. A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography[J]. Gondwana Research, 2014,26(1):348-364.
DOI URL |
[46] |
PULLEN A, KAPP P, GEHRELS G E, et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet[J]. Journal of Asian Earth Sciences, 2008,33(5):323-336.
DOI URL |
[47] |
ZHU D, ZHAO Z, NIU Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011,39(8):727-730.
DOI URL |
[48] | FONT E, CARLUT J, REMAZEILLES C, et al. End-Cretaceous akaganéite and its potential as a mineral marker of Deccan volcanism in the global sedimentary record[M] //EGU.EGU General Assembly Conference Abstracts. Vienna:EGU, 2017: 1-2. |
[49] | ZHANG L, WANG C, WIGNALL P B, et al. Deccan volcanism caused coupled $ρ_{co_{2}}$ and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018,46(3):272-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||