Geoscience ›› 2024, Vol. 38 ›› Issue (04): 922-933.DOI: 10.19657/j.geoscience.1000-8527.2024.093
• Theories and Methods of Tectono-physicochemistry • Previous Articles Next Articles
ZHANG Shaoying1,2,3(), HE Wenyan2,3(
), XIAO Yiwu1
Online:
2024-08-10
Published:
2024-10-16
Contact:
HE Wenyan
CLC Number:
ZHANG Shaoying, HE Wenyan, XIAO Yiwu. Constraints from Periodic Replenishment of Mafic Magma on Porphyry Mineralization in the Pulang Porphyry Cu-Au Deposit, Yunnan Province: Energy-constrained Thermodynamic Modeling[J]. Geoscience, 2024, 38(04): 922-933.
组成 | 硅酸质岩浆端元(%) | 镁铁质岩浆端元(%) |
---|---|---|
SiO2 | 63.30 | 59.65 |
TiO2 | 0.52 | 0.56 |
Al2O3 | 15.38 | 13.50 |
Fe2O3 | 1.18 | 1.61 |
FeO | 3.55 | 4.42 |
MnO | 0.07 | 0.06 |
MgO | 2.81 | 5.25 |
CaO | 3.99 | 4.66 |
Na2O | 3.06 | 2.72 |
K2O | 4.56 | 4.82 |
P2O5 | 0.33 | 0.77 |
H2O | 1.23 | 1.97 |
Table 1 Composition of silicate magma and mafic magma required for simulation calculations
组成 | 硅酸质岩浆端元(%) | 镁铁质岩浆端元(%) |
---|---|---|
SiO2 | 63.30 | 59.65 |
TiO2 | 0.52 | 0.56 |
Al2O3 | 15.38 | 13.50 |
Fe2O3 | 1.18 | 1.61 |
FeO | 3.55 | 4.42 |
MnO | 0.07 | 0.06 |
MgO | 2.81 | 5.25 |
CaO | 3.99 | 4.66 |
Na2O | 3.06 | 2.72 |
K2O | 4.56 | 4.82 |
P2O5 | 0.33 | 0.77 |
H2O | 1.23 | 1.97 |
[1] | WILKINSON J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6(11):917. |
[2] | GALVEZ M E, CONNOLLY J A, MANNING C E. Implications for metal and volatile cycles from the pH of subduction zone fluids[J]. Nature, 2016,539:420-424 |
[3] | SILLITOE R H. Why no porphyry copper deposits in Japan and South Korea?[J]. Resource Geology, 2018, |
[4] | RICHARDS J. Tectono-magmatic precursors for porphyry Cu-(Mo-Au)deposit formation[J]. Economic Geology, 2003, 98(8):1515-1533. |
[5] | HILDRETH W, MOORBATH S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98(4):455-489. |
[6] | DEPAOLO D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 1981, 53(2):189-202. |
[7] | SEEDORFF E, DILLES J, PROFFETT J, et al. Porphyry deposits:Characteristics and origin of hypogene features[J]. Economic Geology 100th Anniversary Volume, 2005,29:251-298. |
[8] | SILLITOE R H. Porphyry copper systems[J]. Economic Geo-logy, 2010, 105(1):3-41. |
[9] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2):332-351. |
[10] | PARK J W, CAMPBELL I H, CHIARADIA M, et al. Crustal magmatic controls on the formation of porphyry copper deposits[J]. Nature Reviews Earth & Environment, 2021, 2(8):542-557. |
[11] | BLUNDY J, MAVROGENES J, TATTITCH B, et al. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs[J]. Nature Geoscience, 2015, 8(3):235. |
[12] | MAUGHAN D T, KEITH J D, CHRISTIANSEN E H, 等. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit,Utah,USA[J]. Mineralium Deposita, 2002, 37(1):14-37. |
[13] | BACHMANN O, BERGANTZ G W. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1):651-674. |
[14] |
WILLIAMSON B, HERRINGTON R, MORRIS A. Porphyry copper enrichment linked to excess aluminium in plagioclase[J]. Nature Geoscience, 2016, 9(3):237.
DOI |
[15] | BOHRSON W A, SPERA F J, GHIORSO M S, et al. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge,assimilation and crystallization:the magma chamber simulator[J]. Journal of Petrology, 2014, 55(9):1685-1717. |
[16] | GHIORSO M S, SACK R O. Chemical mass transfer in magmatic processes IV.A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3):197-212. |
[17] | ASIMOW P D, GHIORSO M S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations[J]. American Mineralogist, 1998, 83(9/10):1127-1132. |
[18] | VIRTANEN V J, HEINONEN J S, BARBER N D, et al. Complex effects of assimilation on sulfide saturation revealed by modeling with the magma chamber simulator:A case study on the Duluth Complex,Minnesota,USA[J]. Economic Geology, 2022, 117(8):1881-1899. |
[19] | ILES K A, HEINONEN J S. Modelling the formation of linear geochemical trends using the magma chamber simulator:A case study of the Jindabyne Granitoids,Lachlan Fold Belt,Australia[J]. Journal of Petrology, 2022, 63(1):egab102. |
[20] | LI W K, YANG Z M, CAO K, et al. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang,southwest China[J]. Contributions to Mineralogy and Petrology, 2019, 174(2):12. |
[21] | WANG D Z, ZHU J J, BI X W, et al. Increasing sulfur and chlorine contents in ore-forming magmas:The key to Pulang porphyry Cu-Au formation,SW China[J]. Ore Geology Reviews, 2021,139:104518. |
[22] | CAO K, YANG Z M, WHITE N C, et al. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in Eastern Tibet[J]. Economic Geology, 2022, 117(1):57-90. |
[23] | CAO K, LI W K, YANG Z M, et al. Geology and genesis of the giant Pulang porphyry Cu-Au district,Yunnan,Southwest China[J]. Economic Geology, 2019, 114(2):275-301. |
[24] | LENG C B, COOKE D R, HOU Z Q, et al. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J]. Economic Geology, 2018, 113(5):1077-1092. |
[25] | LI W C, ZHANG X F, YU H J, et al. Geology and mineralization of the Pulang supergiant porphyry copper deposit (5.11 Mt)in Shangrila,Yunnan Province,China:A review[J]. China Geology, 2022, 5(4):662-695. |
[26] | LI W C, ZENG P S, HOU Z Q, et al. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province,Southwest China[J]. Economic Geology, 2011, 106(1):79-92. |
[27] | 张少颖, 和文言, 高雪, 等. 斑岩铜矿床成矿流体演化:中甸普朗铜矿床蚀变矿物学与热力学模拟[J]. 岩石学报, 2020, 36(5):1611-1625. |
[28] | YANG Z M, COOKE D R. Porphyry Cu deposits in China[J]. Society of Economic Geologists Special Publication, 2019,22:133-187. |
[29] | LENG C B, GAO J F, CHEN W T, et al. Platinum-group elements,zircon Hf-O isotopes,and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system,SW China[J]. Gondwana Research, 2018,62:163-177. |
[30] | WANG P, DONG G C, ZHAO G C, et al. Petrogenesis of the Pulang porphyry complex,southwestern China:Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere[J]. Lithos, 2018,304:280-297. |
[31] | YANG L Q, DENG J, DILEK Y, et al. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau:Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics[J]. Lithos, 2016,245:258-273. |
[32] | DENG J, WANG Q F, LI G J, et al. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J]. Gondwana Research, 2014, 26(2):419-437. |
[33] | 侯增谦, 莫宣学, 谭劲, 等. “三江”义敦岛弧带玄武岩喷发序列与裂谷—岛弧转化[J]. 中国地质科学院院报, 1993, 26(1):49-67. |
[34] | WANG D Z, HU R, HOLLINGS P, et al. Remelting of a Neoproterozoic arc root:origin of the Pulang and Songnuo porphyry Cu deposits,Southwest China[J]. Mineralium Deposita, 2021, 56(6):1043-1070. |
[35] | CAO K, YANG Z M, XU J F, et al. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc,eastern Tibet[J]. Lithos, 2018,304:436-449. |
[36] | YANG L Q, HE W Y, GAO X, et al. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane,Eastern Tethys:Implications for subduction-and transtension-related metallogeny[J]. Gondwana Research, 2018,62:144-162. |
[37] | LENG C B, WANG D Z, YU H J, et al. Mapping hydrothermal alteration zones with short wavelength infrared (SWIR)spectra and magnetic susceptibility at the Pulang porphyry Cu-Au deposit,Yunnan,SW China[J]. Mineralium Deposita, 2024, 59(4):699-716. |
[38] | 刘欢, 张长青, 贾福东, 等. 西南三江普朗铜矿岩浆混合作用:矿物学和地球化学证据[J]. 岩石学报, 2015, 31(11):3189-3202. |
[39] | ZHANG S Y, YANG L Q, HE W Y, et al. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions:A case study at Pulang porphyry Cu-Au deposit,China[J]. Ore Geology Reviews, 2021,139:104509. |
[40] | HOLLAND T, BLUNDY J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 1994, 116(4):433-447. |
[41] | 曹殿华, 王安建, 李文昌, 等. 普朗斑岩铜矿岩浆混合作用:岩石学及元素地球化学证据[J]. 地质学报, 2009, 83(2):166-175. |
[42] | BORISOV A, BEHRENS H, HOLTZ F. Ferric/ferrous ratio in silicate melts:a new model for 1 atm data with special emphasis on the effects of melt composition[J]. Contributions to Minera-logy and Petrology, 2018, 173(12):98. |
[43] | STUDENT J J, BODNAR R J. Silicate melt inclusions in porphyry copper deposits:Identification and homogenization behavior[J]. The Canadian Mineralogist, 2004, 42(5):1583-1599. |
[44] | FORTIN M A, RIDDLE J, DESJARDINS-LANGLAIS Y, et al. The effect of water on the sulfur concentration at sulfide saturation (SCSS)in natural melts[J]. Geochimica et Cosmochimica Acta, 2015,160:100-116. |
[45] | WEBSTER J D, VETERE F, BOTCHARNIKOV R E, et al. Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 ℃:Applications to magmas of Augustine Volcano,Alaska[J]. American Mineralogist, 2015, 100(2/3):522-535. |
[46] | CHIARADIA M, CARICCHI L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment[J]. Scientific Reports, 2017, 7(1):44523. |
[47] |
杨立强, 杨伟, 张良, 等. 热液成矿系统构造控矿理论[J]. 地学前缘, 2024, 31(1):239-266.
DOI |
[48] | CANDELA P A. A review of shallow,ore-related granites:textures,volatiles,and ore metals[J]. Journal of Petrology, 1997, 38(12):1619-1633. |
[49] | WEBSTER J D. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology, 2004, 210(1/2/3/4):33-48. |
[50] | HEINRICH C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study[J]. Mineralium Deposita, 2005, 39(8):864-889. |
[51] | SCHÖPA A, ANNEN C, DILLES J H, et al. Magma emplacement rates and porphyry copper deposits:thermal modeling of the Yerington Batholith,Nevada[J]. Economic Geology, 2017, 112(7):1653-1672. |
[52] | STEINBERGER I, HINKS D, DRIESNER T, et al. Source plutons driving porphyry copper ore formation:Combining geomagnetic data,thermal constraints,and chemical mass balance to quantify the magma chamber Beneath the Bingham Canyon Deposit[J]. Economic Geology, 2013, 108(4):605-624. |
[53] | KORGES M, WEIS P, ANDERSEN C. The role of incremental magma chamber growth on ore formation in porphyry copper systems[J]. Earth and Planetary Science Letters, 2020,552:116584. |
[54] | SCHOENE B, SCHALTEGGER U, BRACK P, et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA,Adamello batholith,Italy[J]. Earth and Planetary Science Letters, 2012,355:162-173. |
[55] | BURET Y, VON QUADT A, HEINRICH C, et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement:Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J]. Earth and Planetary Science Letters, 2016,450:120-131. |
[56] | WARK D A, HILDRETH W, SPEAR F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238. |
[57] | SPARKS R S J, MARSHALL L A. Thermal and mechanical constraints on mixing between mafic and silicic magmas[J]. Journal of Volcanology and Geothermal Research, 1986, 29(1/2/3/4):99-124. |
[1] | HONG Huan-1, 2 , WANG Jian-Beng-1, 2 , LIU Jia-Jun-1, 2 , CAO Rui-Rong-3, HUI De-Feng-3, CHENG Jian-Jun-3. Mineralogy of the Xiba Granitoid Pluton in the Southern Qinling Orogenic Belt and Its Implications for Petrogenesis [J]. Geoscience, 2011, 25(3): 489-502. |
[2] | SHANG Hai-tao,LI Zhi-ling, YANG Qi, XI Hong-bo, HAO Chun-bo. Removal of Volatile Chlorinated Hydrocarbons in Water by Supported Nanoscale Pd/Fe Particles [J]. Geoscience, 2008, 22(2): 313-320. |
[3] | BAI Dao-yuan, HUANG Jian-zhong, MA Tie-qiu, WANG Xian-hui. Geology and Geochemistry of the Silurian Penggongmiao Granitic Pluton in the Southeastern Hunan Province and Its Implication for Tectonic Setting [J]. Geoscience, 2006, 20(1): 130-140. |
[4] | CHEN Hong-wei, LUO Zhao-hua, MO Xuan-xue, ZHAN Hua-ming. Characteristics and Origin of the Akaraz Shan Complex in the Western Kunlun Mountains [J]. Geoscience, 2005, 19(2): 189-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||