Geoscience ›› 2023, Vol. 37 ›› Issue (01): 164-172.DOI: 10.19657/j.geoscience.1000-8527.2022.079
• Geophysics and Information Technology • Previous Articles Next Articles
LIU Caiyun1(), LI Mengdi1, XIONG Jie2(
), WANG Rong2
Received:
2021-10-30
Revised:
2022-08-30
Online:
2023-02-10
Published:
2023-03-20
CLC Number:
LIU Caiyun, LI Mengdi, XIONG Jie, WANG Rong. Inversion of Gravity Anomaly Based on AlexNet Deep Neural Network[J]. Geoscience, 2023, 37(01): 164-172.
类型 | 卷积/池化 核大小 | 通道数 | 步长 | 输入 | 输出 | |||
---|---|---|---|---|---|---|---|---|
第①层 | 卷积 | 1×11 | 96 | 4 | 1×101 | 45×96 | ||
池化 | 1×3 | None | 2 | |||||
第②层 | 卷积 | 1×5 | 256 | 1 | 45×96 | 20×256 | ||
池化 | 1×3 | None | 2 | |||||
第③层 | 卷积 | 1×3 | 384 | 1 | 20×256 | 18×384 | ||
第④层 | 卷积 | 1×3 | 384 | 1 | 18×384 | 16×384 | ||
第⑤层 | 卷积 | 1×3 | 256 | 1 | 16×384 | 6×256 | ||
池化 | 1×3 | None | 2 | |||||
第⑥层 | 全连接 | None | 1024 | None | 6×256 | 1×1024 | ||
第⑦层 | 全连接 | None | 800 | None | 1×1024 | 1×800 |
Table 1 Parameters of AlexInvNet network structure
类型 | 卷积/池化 核大小 | 通道数 | 步长 | 输入 | 输出 | |||
---|---|---|---|---|---|---|---|---|
第①层 | 卷积 | 1×11 | 96 | 4 | 1×101 | 45×96 | ||
池化 | 1×3 | None | 2 | |||||
第②层 | 卷积 | 1×5 | 256 | 1 | 45×96 | 20×256 | ||
池化 | 1×3 | None | 2 | |||||
第③层 | 卷积 | 1×3 | 384 | 1 | 20×256 | 18×384 | ||
第④层 | 卷积 | 1×3 | 384 | 1 | 18×384 | 16×384 | ||
第⑤层 | 卷积 | 1×3 | 256 | 1 | 16×384 | 6×256 | ||
池化 | 1×3 | None | 2 | |||||
第⑥层 | 全连接 | None | 1024 | None | 6×256 | 1×1024 | ||
第⑦层 | 全连接 | None | 800 | None | 1×1024 | 1×800 |
分类 | 参数 | 值 |
---|---|---|
数据集 | 训练集 | 4432 |
测试集 | 1109 | |
网络参数 | 学习率 | 1×10-3 |
激活函数 | ReLU | |
优化器 | Adam | |
1 | ||
0.01 | ||
训练过程 | Epochs | 40000 |
Batch size | 1000 |
Table 2 Related parameters for AlexInvNet network
分类 | 参数 | 值 |
---|---|---|
数据集 | 训练集 | 4432 |
测试集 | 1109 | |
网络参数 | 学习率 | 1×10-3 |
激活函数 | ReLU | |
优化器 | Adam | |
1 | ||
0.01 | ||
训练过程 | Epochs | 40000 |
Batch size | 1000 |
[1] | 李泽林, 姚长利, 郑元满. 基于Lp范数稀疏优化算法的重力三维反演[J]. 地球物理学报, 2019, 62(10):3699-3709. |
[2] |
HU Z L, LIU S, HU X Y, et al. Inversion of magnetic data using deep neural networks[J]. Physics of the Earth and Planetary Interiors, 2021, 311:106653.
DOI URL |
[3] |
WEI C, LI X F, ZHEN X D. The group search based parallel algorithm for the serial Monte Carlo inversion method[J]. Applied Geophysics, 2010, 7(2): 127-134.
DOI URL |
[4] | 于鹏, 王家林, 吴健生. 二度半长方体组合模型的重力模拟退火反演[J]. 地球物理学报, 2007, 50(3):882-889. |
[5] | 万玲, 林婷婷, 林君, 等. 基于自适应遗传算法的MRS-TEM联合反演方法研究[J]. 地球物理学报, 2013, 56(11):3728-3740. |
[6] | 朱凯光, 林君, 韩悦慧, 等. 基于神经网络的时间域直升机电磁数据电导率深度成像[J]. 地球物理学报, 2010, 53(3):743-750. |
[7] | 熊杰, 刘彩云, 邹长春. 基于粒子群优化算法的感应测井反演[J]. 物探与化探, 2013, 37(6):1141-1145. |
[8] | 熊杰, 孟小红, 刘彩云, 等. 基于差分进化的大地电磁反演[J]. 物探与化探, 2012, 36(3):448-451. |
[9] | 刘双, 刘天佑, 冯杰, 等. 蚁群算法在磁测资料反演解释中的应用[J]. 物探与化探, 2013, 37(1):150-154. |
[10] |
XIONG J, ZHANG T. Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data[J]. Applied Geophysics, 2015, 12(2):127-136.
DOI URL |
[11] | 张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4):385-397,410. |
[12] | 王昊, 严加永, 付光明, 等. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展, 2020, 35(2): 642-655. |
[13] |
LI S C, LIU B, REN Y X, et al. Deep-learning inversion of seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 2135-2149.
DOI URL |
[14] |
WU B, MENG D, WANG L, et al. Seismic impedance inversion using fully convolutional residual network and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2140-2144.
DOI URL |
[15] | 杨庭威, 曹丹平, 杜南樵, 等. 基于深度学习的接收函数横波速度预测[J]. 地球物理学报, 2022, 65(1):214-226. |
[16] | 伊小蝶, 吴帮玉, 孟德林, 等. 数据增广和主动学习在波阻抗反演中的应用[J]. 石油地球物理勘探, 2021, 56(4):707-715. |
[17] | 王德涛, 陈国雄. 基于时间卷积网络的地震波阻抗反演[J]. 地球科学, 2022, 47(4):1492-1506. |
[18] | 奚先, 黄江清. 基于卷积神经网络的地震偏移剖面中散射体的定位和成像[J]. 地球物理学报, 2020, 63(2):684-714. |
[19] | WANG W Q, WANG Q, LU W K. Physics-constrained seismic impedance inversion based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:7503305. |
[20] |
WU B Y, MENG D L, ZHAO H X. Semi-supervised learning for seismic impedance inversion using generative adversarial networks[J]. Remote Sensing, 2021, 13(5):909.
DOI URL |
[21] |
HUANG J Y, NOWACK R L. Machine learning using U-net convolutional neural networks for the imaging of sparse seismic data[J]. Pure and Applied Geophysics, 2020, 177(6):2685-2700.
DOI |
[22] |
ALFARRAJ M, ALREGIB G. Semisupervised sequence modeling for elastic impedance inversion[J]. Interpretation, 2019, 7(3):SE237-SE249.
DOI URL |
[23] | 王鹤, 刘威, 席振铢. 基于深度置信网络的大地电磁非线性反演[J]. 中南大学学报, 2019, 26(9):2482-2494. |
[24] |
WU S H, HUANG Q H, ZHAO L. Convolutional neural network inversion of airborne transient electromagnetic data[J]. Geophysical Prospecting, 2021, 69(8):1761-1772.
DOI URL |
[25] |
LIU Z G, CHEN H, REN Z Y, et al. Deep learning audiomagnetotellurics inversion using residual-based deep convolution neural network[J]. Journal of Applied Geophysics, 2021, 188:104309.
DOI URL |
[26] |
MOQHADAS D. One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network[J]. Geophysical Journal International, 2020, 222(1):247-259.
DOI URL |
[27] |
NOH K, YOON D, BYUN B. Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network[J]. Exploration Geophysics, 2019, 51(2):214-220.
DOI URL |
[28] |
WANG H, LIU Y H, YIN C C, et al. Stochastic inversion of magnetotelluric data using deep reinforcement learning[J]. Geophysics, 2021, 87(1):E49-E61.
DOI URL |
[29] |
GUO R, YAO H M, LI M K, et al. Joint inversion of audio-magnetotelluric and seismic travel time data with deep learning constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9):7982-7995.
DOI URL |
[30] |
LIU W, XI Z Z, WANG H, et al. Two dimensional deep learning inversion of magnetotelluric sounding data[J]. Journal of Geophysics and Engineering, 2021, 18(5):627-641.
DOI URL |
[31] |
PUZYREV V, SWIDINSKY A. Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks[J]. Computer and Geosciences, 2021, 149:104681.
DOI URL |
[32] | 张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64(4):1435-1452. |
[33] | ZHANG L Z, ZHANG G B, LIU Y, et al. Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5905919. |
[34] | YANG Q G, HU X Y, LIU S, et al. 3-D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:3001305. |
[35] | 薛瑞洁, 熊杰, 张月, 等. 基于卷积神经网络的磁异常反演[J]. 现代地质, 2023, 37(1):194-209. |
[36] | 王蓉, 熊杰, 刘倩, 等. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2):451-458. |
[37] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[M]//Advances in Neural Information Processing Systems 25.NIPS, 2012:1097-1105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||