Geoscience ›› 2018, Vol. 32 ›› Issue (05): 938-952.DOI: 10.19657/j.geoscience.1000-8527.2018.05.07
• Petroleum Geology • Previous Articles Next Articles
HE Dashuang1,2,3(), HUANG Haiping2,3(
), HOU Dujie2, ZHANG Penghui1
Received:
2017-12-20
Revised:
2018-02-20
Online:
2018-10-10
Published:
2018-11-04
CLC Number:
HE Dashuang, HUANG Haiping, HOU Dujie, ZHANG Penghui. Composition of Lipid Compounds in the Peat Deposit in Mildred Bog from the Athabasca Region, Canada[J]. Geoscience, 2018, 32(05): 938-952.
[1] | 王国平, 贾琳, 刘景双, 等. 国外大气沉降泥炭沼泽档案研究进展[J]. 湿地科学, 2006, 4(1): 69-74. |
[2] | 黄咸雨, 谢树成. 泥炭沉积分子古气候研究进展[J]. 第四纪研究, 2016, 36(3): 666-673. |
[3] |
CHAMBERS F M, DAN J C. Holocene environmental change: Contributions from the peatland archive[J]. Holocene, 2004, 14(1): 1-6.
DOI URL |
[4] |
CHARMAN D J, HENDON D, PACKMAN S. Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: implications for Holocene palaeoclimate records[J]. Journal of Quaternary Science, 2015, 14(5): 451-463.
DOI URL |
[5] |
SEREBRENNIKOVA O V, PREIS Y I, KADYCHAGOV P B, et al. Hydrocarbon composition of the organic matter of peats in the south of Western Siberia[J]. Solid Fuel Chemistry, 2010, 44(5): 324-334.
DOI URL |
[6] |
XIE S, EVERSHED R P. Peat molecular fossils recording paleoclimatic change and organism replacement[J]. Chinese Science Bulletin, 2001, 46(20): 1749-1752.
DOI URL |
[7] | 段毅. 甘南沼泽沉积脂类生物标志化合物的组成特征[J]. 地球化学, 2002, 31(6): 525-531. |
[8] | 杨桂芳, 谢树成, 黄俊华, 等. 天目山泥炭类脂物记录的微生物特征和植被演替[J]. 地学前缘, 2008, 15(4): 170-177. |
[9] |
LIU X L, LEIDER A, GILLESPIE A, et al. Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in Northern Germany[J]. Organic Geochemistry, 2010, 41(7): 653-660.
DOI URL |
[10] |
NOTT C J, XIE S, AVSEJS L A, et al. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation[J]. Organic Geochemistry, 2000, 31(2): 231-235.
DOI URL |
[11] |
FICKEN K J, BARBER K E, EGLINTON G. Lipid biomarker,δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J]. Organic Geochemistry, 1998, 28 (3): 217-237.
DOI URL |
[12] |
NICHOLS J E, BOOTH R K, JACKSON S T, et al. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat[J]. Organic Geochemistry, 2006, 37(11): 1505-1513.
DOI URL |
[13] |
HUANG Y, BOL R, HARKNESS D D. Postglacial variations in distributions,13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils[J]. Organic Geochemistry, 1996, 24(3): 273-287.
DOI URL |
[14] |
FICKEN K J, LI B, SWAIN D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7): 745-749.
DOI URL |
[15] |
MAGNAN G, BELLEN S V, DAVIES L, et al. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies[J]. Quaternary Science Reviews, 2018, 185: 230-243.
DOI URL |
[16] |
ANDERSSON R A, KUHRY P, MEYERS P, et al. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic[J]. Organic Geochemistry, 2011, 42(9): 1065-1075.
DOI URL |
[17] |
BINGHAM E M, MCCLYMONT E L, VÄLIRANTA M, et al. Conservative composition of n-alkane biomarkers in Sphagnum species: implications for palaeoclimatere construction in ombrotrophic peat bogs[J]. Organic Geochemistry, 2010, 41(2): 214-220.
DOI URL |
[18] |
DUAN Y, MA L. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit(Eastern Qinghai-Tibet plateau, China)[J]. Organic Geochemistry, 2001, 32(12): 1429-1442.
DOI URL |
[19] |
JANSEN B, NIEROP K G J, HAGEMAN J A, et al. The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes[J]. Organic Geochemistry, 2006, 37(11): 1514-1536.
DOI URL |
[20] |
NICHOLS J E, HUANG Y. C23-C31 n-alkan-2-ones are biomarkers for the genus Sphagnum in freshwater peatlands[J]. Organic Geochemistry, 2007, 38(11): 1972-1976.
DOI URL |
[21] |
ORTIZ J E, DÍAZ-BAUTISTA A, ALDASORO J J, et al. n-Alkan-2-ones in peat-forming plants from the Ronanzas ombrotrophic bog (Asturias, northern Spain)[J]. Organic Geochemistry, 2011, 42(6): 586-592.
DOI URL |
[22] |
ZHENG Y, ZHOU W, LIU X, et al. n-Alkan-2-one distributions in a northeastern China peat core spanning the last 16 kyr[J]. Organic Geochemistry, 2011, 42(1): 25-30.
DOI URL |
[23] |
ZHENG Y, ZHOU W, MEYERS P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China[J]. Organic Geochemistry, 2007, 38(11): 1927-1940.
DOI URL |
[24] |
PANCOST R D, BAAS M, GEEL B V, et al. Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog[J]. Organic Geochemistry, 2002, 33(7): 675-690.
DOI URL |
[25] |
JAFFÉ R, RUSHDI A I, MEDEIROS P M, et al. Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river[J]. Chemosphere, 2006, 64(11): 1870-1884.
PMID |
[26] |
RIELLEY G, COLLIER R J, JONES D M, et al. The biogeochemistry of Ellesmere Lake, UK-I: source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912.
DOI URL |
[27] | 向明菊, 史继扬, 周友平, 等. 不同类型沉积物中脂肪酸的分布、演化和生烃意义[J]. 沉积学报, 1997, 28(2): 84-88. |
[28] |
DISNAR J R, STEFANOVA M, BOURDON S, et al. Sequential fatty acid analysis of a peat core covering the last two millennia (Tritrivakely lake, Madagascar): diagenesis appraisal and consequences for palaeoenvironmental reconstruction[J]. Organic Geochemistry, 2005, 36(10): 1391-1404.
DOI URL |
[29] | 妥进才, 张明峰, 王先彬. 鄂尔多斯盆地北部东胜铀矿区沉积有机质中脂肪酸甲酯的检出及意义[J]. 沉积学报, 2006, 24(3): 432-439. |
[30] | 瞿文川, 张平中. 太湖沉积物中长链脂肪酸甲酯化合物的检出及意义[J]. 湖泊科学, 1999, 11(3): 245-250. |
[31] |
RONTANI J F, MARTY J C, MIQUEL J C, et al. Free radical oxidation(autoxidation) of alkenones and other microalgal lipids in seawater[J]. Organic Geochemistry, 2006, 37(3): 354-368.
DOI URL |
[32] |
OTTO A, SIMONEIT B R T. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3505-3527.
DOI URL |
[33] |
HUANG X, XIE S, ZHANG C L, et al. Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, southern China[J]. Organic Geochemistry, 2008, 39(12): 1765-1771.
DOI URL |
[34] |
GUIGNARD C, LEMÉE L, AMBLÈS A. Lipid constituents of peat humic acids and humin. Distinction from directly extractable bitumen components using TMAH and TEAAc thermochemolysis[J]. Organic Geochemistry, 2005, 36(2): 287-297.
DOI URL |
[35] |
DUAN Y. Pentacyclic triterpenoid ketones in peat from Gannan Marsh, China[J]. Chinese Science Bulletin, 2001, 46(17): 1433-1435.
DOI URL |
[36] |
VOLKMAN J K. A review of sterol markers for marine and terrigenous organic matter[J]. Organic Geochemistry, 1986, 9(2): 83-99.
DOI URL |
[37] | 郑红菊. 灵武煤田煤中镜质组与丝质组的甾萜类化合物对比研究[J]. 现代地质, 1994, 8(2): 187-193. |
[38] |
YING G G, KOOKANA R S, RU Y J. Occurrence and fate of hormone steroids in the environment[J]. Environment international, 2002, 28(6): 545-551.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||