Geoscience ›› 2025, Vol. 39 ›› Issue (01): 1-7.DOI: 10.19657/j.geoscience.1000-8527.2024.101
• Tectonics and Structural Geology • Previous Articles Next Articles
ZHAO Di1(), LIU Xin1(
), ZHAO Dapeng2
Online:
2025-02-10
Published:
2025-02-20
Contact:
LIU Xin
CLC Number:
ZHAO Di, LIU Xin, ZHAO Dapeng. Shear-wave Velocity and Azimuthal Anisotropy in the Upper Mantle of the Tonga Subduction Zone[J]. Geoscience, 2025, 39(01): 1-7.
[1] | CHANG S J, FERREIRA A M G, FACCENDA M. Upper-and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs[J]. Nature Communications, 2016, 7: 10799. |
[2] | SCHMID F, KOPP H, SCHNABEL M, et al. Crustal structure of the Niuafo’ou Microplate and Fonualei Rift and spreading center in the Northeastern Lau Basin, Southwestern Pacific[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(6): e2019JB01918. |
[3] | TAYLOR B, ZELLMER K, MARTINEZ F, et al. Sea-floor spreading in the Lau back-arc basin[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 35-40. |
[4] | ZHAO D P, XU Y B, WIENS D A, et al. Depth Extent of the Lau Back-Arc Spreading Center and Its Relation to Subduction Processes[J]. Science, 1997, 278: 254-257. |
[5] | CONDER J A, WIENS D A. Seismic structure beneath the Tonga arc and Lau back-arc basin determined from joint Vp, Vp/Vs tomography[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(3): Q03018. |
[6] | MENKE W, ZHA Y, WEBB S C, et al. Seismic anisotropy indicates ridge-parallel asthenospheric flow beneath the Eastern Lau Spreading Center[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 976-992. |
[7] | WEI S S, ZHA Y, SHEN W S, et al. Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4705-4724. |
[8] | WEI S S, WIENS D A. P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes[J]. Earth and Planetary Science Letters, 2018, 502: 187-199. |
[9] | WEI S S, WIENS D A. High bulk and shear attenuation due to partial melt in the Tonga-Lau Back-arc Mantle[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1):e2019JB017527. |
[10] | YU Z T, ZHAO D P, LI J B. Structure and dynamics of the Tonga subduction zone: New insight from P-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 598: 117844. |
[11] | FISCHER K M, WIENS D A. The depth distribution of mantle anisotropy beneath the Tonga subduction zone[J]. Earth and Planetary Science Letters, 1996, 142(1/2): 253-260. |
[12] |
SMITH G P, WIENS D A, FISCHER K M, et al. A complex pattern of mantle flow in the Lau Backarc[J]. Science, 2001, 292: 713-716.
PMID |
[13] | FOLEY B J, LONG M D. Upper and mid-mantle anisotropy beneath the Tonga slab[J]. Geophysical Research Letters, 2011, 38(2): L02303. |
[14] | PEARCE J A, KEMPTON P D, GILL J B. Hf-Nd evidence for the origin and distribution of mantle domains in the SW Pacific[J]. Earth and Planetary Science Letters, 2007, 260(1/2): 98-114. |
[15] | LYTLE M L, KELLEY K A, HAURI E H, et al. Tracing mantle sources and Samoan influence in the northwestern Lau back-arc basin[J]. Geochemistry Geophysics Geosystems, 2012, 13(10): Q10019. |
[16] | PRICE A A, JACKSON M G, BLICHERT-TOFT J, et al. Evidence for a broadly distributed Samoan-plume signature in the northern Lau and North Fiji Basins[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 986-1008. |
[17] | PRICE A A, JACKSON M G, BLICHERT-TOFT J, et al. Geochemical evidence in the northeast Lau Basin for subduction of the Cook-Austral volcanic chain in the Tonga Trench[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5): 1694-1724. |
[18] | PRICE A A, JACKSON M G, BLICHERT-TOFT J, et al. Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 1013-1042. |
[19] | LIU X, ZHAO D. P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data[J]. Physics of the Earth and Planetary Interiors, 2016, 252: 1-22. |
[20] | LIU X, ZHAO D P. Seismic evidence for a plume-modified oceanic lithosphere-asthenosphere system beneath Cape Verde[J]. Geophysical Journal International, 2021, 225(2): 872-886. |
[21] | FORSYTH D W, LI A B. Array Analysis of Two-Dimensional Variations in Surface Wave Phase Velocity and Azimuthal Anisotropy in the Presence of Multipathing Interference[J]. American Geophysical Union Geophysical Monograph Series, 2005, 157: 81-97. |
[22] | WANG J, ZHAO D P. Mapping P-wave anisotropy of the Honshu arc from Japan Trench to the back-arc[J]. Journal of Asian Earth Sciences, 2010, 39(5): 396-407. |
[23] | PAIGE C C, SAUNDERS M A. LSQR, An algorithm for sparse linear equations and sparse least squares[J]. ACM Trans Math Software, 1982, 8(1),43-71. |
[24] | KENNETT B L N, ENGDAHL E R, BULAND R. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122(1): 108-124. |
[25] | LIU X, ZHAO D P. Backarc spreading and mantle wedge flow beneath the Japan Sea: insight from Rayleigh-wave anisotropic tomography[J]. Geophysical Journal International, 2016, 207(1): 357-373. |
[26] | YANG Y J, FORSYTH D W. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels[J]. Geophysical Journal International, 2006, 166(3): 1148-1160. |
[27] | ZHAO D, HASEGAWA A, HORIUCHI S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B13):19909-19928. |
[28] | LIU X, ZHAO D P. Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(7): 5086-5115. |
[29] | WANG J, ZHAO D P. P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones[J]. Geophysical Journal International, 2013, 193(3): 1166-1181. |
[30] | SALTO M. DISPER 80. A subroutine package for the calculation of seismic normal-mode Solutions[M]//DOORNBOS D J.Seismological Algorithms Computational Methods and Computer Programs. Academic Press, 1988: 293-319. |
[31] | BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 2[J]. Journal of Geophysical Research, 1961, 66(7): 2199-2224. |
[32] | ZHAO L, LIU X, ZHAO D P, et al. Mapping the Pacific Slab Edge and Toroidal Mantle Flow Beneath Kamchatka[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021JB022518. |
[33] | WANG X, LIU X, ZHAO D P, et al. Oceanic plate subduction and continental extrusion in Sumatra: Insight from S-wave anisotropic tomography[J]. Earth and Planetary Science Letters, 2022, 580: 117388. |
[34] | CUI H H, ZHOU Y Z, CHEN Y L. Seismic evidence of the lithosphere-asthenosphere boundary beneath the Tonga area, southwestern Pacific[J]. Journal of Asian Earth Sciences, 2017, 138: 129-135. |
[35] | BUTTLES J, OLSON P. A laboratory model of subduction zone anisotropy[J]. Earth and Planetary Science Letters, 1998, 164(1/2): 245-262. |
[36] | KINCAID C, GRIFFITHS R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J]. Nature, 2003, 425: 58-62. |
[37] | MARTIN A K. Concave slab out board of the Tonga subduction zone caused by opposite toroidal flows under the North Fiji Basin[J]. Tectonophysics, 2014, 622: 56-61. |
[38] | KARATO S-I, JUNG H, KATAYAMA I, et al. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies[J]. Annual Review of Earth and Planetary Sciences, 2008, 36(1): 59-95. |
[39] | 江国明, 张贵宾, 徐峣. 中国东北地区太平洋板块精细俯冲特征[J]. 现代地质, 2012, 26(6): 1125-1135. |
[40] |
HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362: 58-61.
DOI PMID |
[41] | RANERO C R, MORGAN J P, MCINTOSH K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature, 2003, 425: 367-373. |
[42] | FACCENDA M, BURLINI L, GERYA T V, et al. Fault-induced seismic anisotropy by hydration in subducting oceanic plates[J]. Nature, 2008, 455: 1097-1100. |
[43] | MILLER N C, LIZARRALDE D. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration[J]. Geophysical Research Letters, 2016, 43(15): 7982-7990. |
[44] |
刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4): 329-340.
DOI |
[45] | CAI C, WIENS D A, SHEN W S, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature, 2018, 563: 389-392. |
[46] | WANG Z W, ZHAO D P, CHEN X F. Seismic Anisotropy and Intraslab Hydrated Faults Beneath the NE Japan Forearc[J]. Geophysical Research Letters, 2022, 49(2): e97266. |
[47] | EBERHART-PHILLIPS D, REYNERS M. Three-dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B6): B06301. |
[48] | ZHOU Z Y, LIN J, BEHN M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench[J]. Geophysical Research Letters, 2015, 42(11): 4309-4317. |
[49] | HUANG Z C, TILMANN F, COMTE D, et al. P wave azimuthal Anisotropic tomography in Northern Chile: Insight into deformation in the subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 742-765. |
[50] | WEI W, ZHAO D P, XU J D, et al. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1642-1666. |
[51] | RUSSELL J B, GAHERTY J B, LIN P Y P, et al. High-Resolution Constraints on Pacific Upper Mantle Petrofabric Inferred From Surface-Wave Anisotropy[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 631-657. |
[52] | BONNARDOT M A, RÉGNIER M, CHRISTOVA C, et al. Seismological evidence for a slab detachment in the Tonga subduction zone[J]. Tectonophysics, 2009, 464(1/2/3/4): 84-99. |
[53] | LONG M D, SILVER P G. The subduction zone flow field from seismic anisotropy: a global view[J]. Science, 2008,319: 315-318. |
[54] | FACCENDA M, CAPITANIO F A. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(1): 243-262. |
[55] | PACZKOWSKI K, THISSEN C J, LONG M D, et al. Deflection of mantle flow beneath subducting slabs and the origin of subslab anisotropy[J]. Geophysical Research Letters, 2014, 41(19): 6734-6742. |
[56] | QIAO Q Y, LIU X, ZHAO D P, et al. Upper mantle structure beneath Mariana: Insights from Rayleigh-wave anisotropic tomography[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(11): e2021GC009902. |
[57] | ZHAO D, LIU X, ZHAO D P, et al. Subduction-driven mantle flow beneath active back-arc basins inferred from seismic anisotropy tomography[J]. Earth and Planetary Science Letters, 2024, 643: 118890. |
[58] | WESSEL P, SMITH W H F. New, improved version of generic mapping tools released[J]. Eos, Transactions American Geophysical Union, 2006, 79: 579-579. |
[59] | GOLDSTEIN P, DODGE D, FIRPO M, et al. SAC2000: Signal processing and analysis tools for seismologists and engineers[J]. International Geophysics. Amsterdam: Elsevier, 2003: 1613-1614. |
[60] | CROTWELL H P, OWENS T J, RITSEMA J. The TauP toolkit: flexible seismic travel-time and ray-path utilities[J]. Seismological Research Letters, 1999, 70(2): 154-160. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||