Geoscience ›› 2022, Vol. 36 ›› Issue (01): 159-171.DOI: 10.19657/j.geoscience.1000-8527.2021.175
• Marine Geology • Previous Articles Next Articles
SHANG Wei1,2(), SU Xin1,2(
), BAI Chenyang1,2, CUI Hongpeng1,2
Received:
2021-11-10
Revised:
2021-12-26
Online:
2022-02-10
Published:
2022-03-08
Contact:
SU Xin
CLC Number:
SHANG Wei, SU Xin, BAI Chenyang, CUI Hongpeng. Correlation of Clay Minerals and Gas Hydrate Saturation in Sediments from the Hydrate Ridge, Eastern Pacific Ocean[J]. Geoscience, 2022, 36(01): 159-171.
ODP钻孔 | 位置(水深/m) | 储层深度/mbsf | 岩性单元 | 储层岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1245B | 44.586° N, 125.148° W (870.0) | 50.75 | 76.00 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 |
76.00 | 129.59 | IIIA | 深绿灰色富含超微化石、富硅藻黏土及粉砂质黏土,与薄层砂质粉砂、粉砂互层 | ||
1244C | 44.586° N, 125.119° W (890.0) | 48.30 | 69.00 | I | 深绿色灰色黏土夹粉砂质黏土、细粉砂薄层 |
69.00 | 125.80 | II | 深绿灰色粉砂质黏土夹细砂、粗粉砂薄层 | ||
1251B | 44.570° N, 125.074° W (1216.0) | 89.85 | 130.00 | IC | 黏土和粉砂质黏土互层组成,含丰富的硅藻、有孔虫等微体化石 |
130.00 | 186.95 | IIA | 粉砂质黏土 |
Table 1 Information of three ODP Leg 204 drillholes and main lithology of gas hydrate reservoir strata (from refs. [22⇓-24])
ODP钻孔 | 位置(水深/m) | 储层深度/mbsf | 岩性单元 | 储层岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1245B | 44.586° N, 125.148° W (870.0) | 50.75 | 76.00 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 |
76.00 | 129.59 | IIIA | 深绿灰色富含超微化石、富硅藻黏土及粉砂质黏土,与薄层砂质粉砂、粉砂互层 | ||
1244C | 44.586° N, 125.119° W (890.0) | 48.30 | 69.00 | I | 深绿色灰色黏土夹粉砂质黏土、细粉砂薄层 |
69.00 | 125.80 | II | 深绿灰色粉砂质黏土夹细砂、粗粉砂薄层 | ||
1251B | 44.570° N, 125.074° W (1216.0) | 89.85 | 130.00 | IC | 黏土和粉砂质黏土互层组成,含丰富的硅藻、有孔虫等微体化石 |
130.00 | 186.95 | IIA | 粉砂质黏土 |
Fig.2 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1245B (hydrate saturation data from ref. [23])
Fig.3 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1244C (hydrate saturation data from ref. [22])
Fig.4 Comparison of lithologic components (sand, silt and clay), clay mineral contents and gas hydrate saturation in the hydrate reservoir sequences in drillhole 1251B (hydrate saturation data from ref. [24])
Fig.5 Pearson correlation analysis of clay mineral content and hydrate saturation of all samples in drillholes 1244C, 1244C (no hydrate saturation data at 56.44 mbsf depth), 1245B, and 1251B
钻孔 | 蒙脱石含量 和水合物饱 和度(R) | 伊利石含量 和水合物饱 和度(R) | 绿泥石含量 和水合物饱 和度(R) | 高岭石含量 和水合物饱 和度(R) |
---|---|---|---|---|
1245B | 0.60 | -0.53 | -0.53 | -0.52 |
1244C | 0.55 | -0.68 | 0.03 | -0.87 |
1251B | 0.97 | -0.99 | -0.99 | -0.60 |
Table 2 Pearson correlation analysis of clay mineral content and hydrate saturation in the fine-grained lithologic intervals of the studied drillholes
钻孔 | 蒙脱石含量 和水合物饱 和度(R) | 伊利石含量 和水合物饱 和度(R) | 绿泥石含量 和水合物饱 和度(R) | 高岭石含量 和水合物饱 和度(R) |
---|---|---|---|---|
1245B | 0.60 | -0.53 | -0.53 | -0.52 |
1244C | 0.55 | -0.68 | 0.03 | -0.87 |
1251B | 0.97 | -0.99 | -0.99 | -0.60 |
印度水 合物钻区 | 钻孔 | 深度/mbsf | 储层沉积粒度组分含量 (平均值) | 蒙脱石/% (平均含量) | 水合物 饱和度/% | 蒙脱石含量与水 合物饱和度关系 |
---|---|---|---|---|---|---|
K-G盆地 | 17-07P | 282.10~282.30 | 砂23.6%,粉砂63.3%,黏土13.1% | 0.4~1.0(0.7) | 20~60 | 正相关 |
282.95~283.20 | 砂7.9%,粉砂76.1%,黏土16.0% | 2.6~3.7(3.1) | 20~50 | 负相关 |
Table 3 Comparison of gas hydrate saturation and montmorillonite contents in reservoir sequence with high and low sand content from drillhole 17-07P in the K-G Basin, offshore India (from ref. [7])
印度水 合物钻区 | 钻孔 | 深度/mbsf | 储层沉积粒度组分含量 (平均值) | 蒙脱石/% (平均含量) | 水合物 饱和度/% | 蒙脱石含量与水 合物饱和度关系 |
---|---|---|---|---|---|---|
K-G盆地 | 17-07P | 282.10~282.30 | 砂23.6%,粉砂63.3%,黏土13.1% | 0.4~1.0(0.7) | 20~60 | 正相关 |
282.95~283.20 | 砂7.9%,粉砂76.1%,黏土16.0% | 2.6~3.7(3.1) | 20~50 | 负相关 |
[1] |
MILKOV A V, SASSEN R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20: 111-128.
DOI URL |
[2] | 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14. |
[3] |
MINSHULL T A, MARÍN-MORENO H, BETLEM P, et al. Hydrate occurrence in Europe: A review of available evidence[J]. Marine and Petroleum Geology, 2020, 111: 735-764.
DOI URL |
[4] |
BAHK J J, KIM D H, CHUN J H, et al. Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 21-29.
DOI URL |
[5] |
EGAWA K, NISHIMURA O, IZUMI S, et al. Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site[J]. Marine and Petroleum Geology, 2015, 66: 379-387.
DOI URL |
[6] |
ITO T, KOMATSU Y, FUJII T, et al. Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 368-378.
DOI URL |
[7] |
OSHIMA M, SUZUKI K, YONEDA J, et al. Lithological properties of natural gas hydrate-bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin[J]. Marine and Petroleum Geology, 2019, 108: 439-470.
DOI URL |
[8] |
SU M, LUO K W, FANG Y X, et al. Grain-size characteristics of fine-grained sediments and association with gas hydrate saturation in Shenhu Area, northern South China Sea[J]. Ore Geology Reviews, 2021, 129. [2021-12-22]. doi.org/10.1016/j.oregeorev.2020.103889.
DOI |
[9] | BOSWELL R, MORIDIS G, REAGAN M, et al. Gas hydrate accumulation types and their application to numerical simulation[M]// 7th International Conference on Gas Hydrates (ICGH 2011). New York: Curran Associates, Inc., 2016: 1157-1168. |
[10] | ZHANG H Q, YANG S X, WU N Y, et al. Successful and surprising results for China’s first gas hydrate drilling expedition[J]. Fire in the Ice, 2007, 7(3): 6-9. |
[11] | YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China’s third gas hydrate drilling expedition: a critical step from discovery to development in the south china sea[J]. Fire in the Ice, 2015, 15(2): 1-5. |
[12] | 陈芳, 苏新, 陆红锋, 等. 南海神狐海域有孔虫与高饱和度水合物的储存关系[J]. 地球科学, 2013, 38(5): 907-915. |
[13] |
WU Z R, LI Y H, SUN X, et al. Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments[J]. Applied Energy, 2018, 230: 1304-1310.
DOI URL |
[14] |
WU Z R, LIU W G, ZHENG J N, et al. Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments[J]. Applied Energy, 2020, 261. [2021-12-22]. doi.org/10.1016/j.apenergy.2019.114479.
DOI |
[15] |
BELLO P A, ALMENNINGEN S, FOTLAND P, et al. Experimental and numerical analysis of the effects of clay content on CH4 hydrate formation in sand[J]. Energy and Fuels, 2021, 35: 9836-9846.
DOI URL |
[16] | Shipboard Scientific Party. Leg 204 summary[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-75. |
[17] | 苏新. 海洋天然气水合物分布与“气-水-沉积物”动态体系: 大洋钻探204航次调查初步结果的启示[J]. 中国科学(D辑: 地球科学), 2004, 34(12): 1091-1099. |
[18] | 苏新, 宋成兵, 方念乔. 东太平洋水合物海岭BSR以上沉积物粒度变化与气体水合物分布[J]. 地学前缘, 2005, 12(1): 234-242. |
[19] | SU X, SONG C B, FANG N Q. Relationship between sediment granulometry and the presence of gas hydrate on Hydrate Ridge[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 1-30. |
[20] |
TRÉHU A M, TORRES M E, MOORE G F, et al. Temporal and spatial evolution of gas hydrate-bearing accretionary ridge on the Oregon[J]. Geology, 1999, 27(10): 939-939.
DOI URL |
[21] | TRÉHU A M, TORRES M E, BOHRMANN G, et al. Leg 204 synthesis: gas hydrate distribution and dynamics in the central Cascadia accretionary complex[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 31-40. |
[22] | Shipboard Scientific Party. Site 1244[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-132. |
[23] | Shipboard Scientific Party. Site 1245[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-131. |
[24] | Shipboard Scientific Party. Site 1251[M]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of ODP 204, Initial Reports. College Station: Ocean Drilling Program, 2003: 1-119. |
[25] | 李琰. 28ka以来莱州湾南岸的沉积学记录及环境意义[D]. 北京: 中国地质大学(北京), 2014. |
[26] |
BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7), 803-832.
DOI URL |
[27] |
MILKOV A V, CLAYPOOL G E, LEE Y J, et al. In situ methane concentrations at Hydrate Ridge, offshore oregon: New constraints on the global gas hydrate inventory from an active margin[J]. Geology, 2003, 31(10): 833-836.
DOI URL |
[28] |
MILKOV A V, DICKENS G R, CLAYPOOL G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222: 829-843.
DOI URL |
[29] |
TRÉHU A M, LONG P E, TORRES M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204[J]. Earth and Planetary Science Letters, 2004, 222: 845-862.
DOI URL |
[30] |
TORRES M E, WALLMANN K, TRÉHU A M, et al. Gas hydrate growth, methane transport and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia Margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226: 225-241.
DOI URL |
[31] |
GARDNER K H, ARIAS M S. Clay swelling and formation permeability reductions induced by a nonionic surfactant[J]. Environmental Science and Technology, 2000, 34(1): 160-166.
DOI URL |
[32] |
WU Z R, LI Y H, SUN X, et al. Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates[J]. Marine and Petroleum Geology, 2018, 91: 373-380.
DOI URL |
[33] |
CHA S B, OUAR H, WILDEMAN T R, et al. A third-surface effect on hydrate formation[J]. The Journal of Physical Chemistry, 1988, 92(23): 6492-6494.
DOI URL |
[34] |
GUGGENHEIM S, GROOS A F. New gas-hydrate phase: Synthesis and stability of clay-methane hydrate intercalate[J]. Geology, 2003, 31(7): 653-656.
DOI URL |
[35] |
KUMARI A, BALOMAJUMDER C, ARORA A, et al. Physio-chemical and mineralogical characteristics of gas hydrate-bearing sediments of the Kerala-Konkan, Krishna-Godavari, and Mahanadi basins[J]. Journal of Marine Science and Engineering, 2021, 9. [2021-12-22]. doi.org/10.3390/jmse9080808.
DOI |
[36] | 周金虹. 粘土矿物孔道表面与流体相互作用的分子模拟[D]. 南京: 南京大学, 2019. |
[37] | 高翔. 黏土矿物学[M]. 北京: 化学工业出版社, 2017: 1-71. |
[38] | 周青, 陆现彩, 朱建喜, 等. 钠蒙脱石层间域内甲烷水合物稳定性影响因素的分子动力学模拟[J]. 矿物学报, 2010, 30(增): 33-34. |
[39] |
陈浩, 徐则林, 颜克凤, 等. 含盐蒙脱石中甲烷水合物的生成/分解特性及离子分布研究[J/OL]. 过程工程学报, 2021. [2021-12-22]. doi: 10.12034/j.issn.1009-606X.221044.
DOI |
[40] |
JI L M, ZHANG T W, MILLIKEN K, et al. Experimental investigation of main controls to methane adsorption in clay-rich rocks[J]. Applied Geochemistry, 2012, 27: 2533-2545.
DOI URL |
[41] | 吉利明, 马向贤, 夏燕青, 等. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2014, 25(2): 141-152. |
[42] |
HEESCHEN K U, SCHICKS J M, OELTZSCHNER G. The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition[J]. Fuel, 2016, 181: 139-147.
DOI URL |
[43] | 王冠, 李桂臣, 孙元田, 等. 伊利石水化机理及膨胀特性的分子模拟研究[J]. 煤炭科技, 2017(3): 16-22. |
[44] |
TUNEGA D, BENCO L, HABERHAUER G, et al. Ab initio molecular dynamics study of adsorption sites on the (001) surfaces of 1∶1 dioctahedral clay minerals[J]. The Journal of Physical Chemistry B, 2002, 106: 11515-11525.
DOI URL |
[45] |
TUNEGA D, HABERHAUER G, GERZABEK M H, et al. Theo-retical study of adsorption sites on the (001) surfaces of 1:1 clay minerals[J]. Langmuir, 2002, 18: 139-147.
DOI URL |
[46] | BERGAYA F, THENG B, LAGALY G. Handbook of Clay Science[M]. Amsterdam: Elsevier, 2006: 44-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||